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Abstract

We show how magnetic observations of the Sun can be used in conjunction with an axisymmetric flux-
transport solar dynamo model in order to estimate the large-scale meridional circulation throughout
the convection zone. Our innovative approach rests on variational data assimilation, whereby the
distance between predictions and observations (measured by an objective function) is iteratively min-
imized by means of an optimization algorithm seeking the meridional flow which best accounts for
the data. The minimization is performed using a quasi-Newton technique, which requires the knowl-
edge of the sensitivity of the objective function to the meridional flow. That sensitivity is efficiently
computed via the integration of the adjoint flux-transport dynamo model. Closed-loop (also known
as twin) experiments using synthetic data demonstrate the validity and accuracy of this technique,
for a variety of meridional flow configurations, ranging from unicellular and equatorially symmetric to
multicellular and equatorially asymmetric. In this well-controlled synthetic context, we perform a sys-
tematic study of the behavior of our variational approach under different observational configurations,
by varying their spatial density, temporal density, noise level, as well as the width of the assimilation
window. We find that the method is remarkably robust, leading in most cases to a recovery of the true
meridional flow to within better than 1%. These encouraging results are a first step towards using this
technique to i) better constrain the physical processes occurring inside the Sun and ii) better predict
solar activity on decadal time scales.
Keywords: Sun: meridional circulation, activity, dynamo, methods: numerical, data assimilation

1. INTRODUCTION

The magnetic activity of our Sun has been monitored
for centuries now. Modern systematic observations of
sunspots started in the early 1600’s. In addition, the
analysis of the concentration of cosmogenic 10Be and 14C
(found in ice cores and tree rings, respectively) makes it
possible to trace back solar activity over the past 10,000
years [(Beer et al. 1998) and (Usoskin 2013)]. This moni-
toring has revealed a cyclic magnetic activity in our Sun:
Sunspots emerge at mid-latitudes during the rising phase
of the cycle; they reach a maximum number 3 to 5 years
later when the polar field flips polarity, while emerging
gradually closer to the equator as the cycle progresses. If
plotted against time, the location in latitude of sunspots
then produces the so-called butterfly diagram. A quan-
titative estimate of the cycle strength was proposed by
Wolf in 1859. He introduced the so-called Wolf num-
ber as R = k(10g + s), with g the number of sunspot
groups, s the total number of individual sunspots in all
groups and k a variable scaling factor that accounts for
instruments or observation conditions. The time series
of the Wolf number starts in 1749, making the solar cy-
cle which peaked in June 1761 Cycle number 1. At the
time of writing, we have just passed the maximum of
Cycle 24. The monthly smoothed Wolf number has in-
deed reached a moderate maximum peak of about 82 in
April 2014, which will probably become the maximum of
Cycle 24. This makes Cycle 24 the weakest cycle since
Cycle 14, which peaked in 1906. This relative low value
is likely connected with the expected end of the current

Gleissberg cycle (Abreu et al. 2008). Predicting solar
activity has become key for our technological society in
which strong solar flares, coronal mass ejections (CMEs)
or any violent event linked with solar activity can cause
significant damage to satellites, air traffic or telecommu-
nication networks (Brun 2007). Consequently, a solar
cycle panel, whose role is to produce predictions of fore-
coming solar activity, was created in 1997. This panel
has provided us with estimates of the sunspot number for
Cycles 23 and 24 (Joselyn et al. 1997; Biesecker 2007).
In the ensemble of 75 predictions of Cycle 24 maximum
sunspot number listed by Pesnell (2012), only 20 had an-
ticipated such a moderate value of 82, taking into account
the uncertainties provided for each prediction. This poor
performance reveals the (expected) difficulties to produce
reliable forecasts of magnetic activity for such a turbulent
chaotic astrophysical system, especially if the prediction
ignores the dynamics of the system and is entirely data-
driven, as was the case for most predictions of Cycle 24,
which relied on geomagnetic precursors or other statisti-
cal estimates (see Hathaway 2009; Pesnell 2012, for two
reviews on the subject).

Recently, however, the use of numerical models in con-
junction with observations, which goes by the generic
name of data assimilation, has started to emerge in the
solar physics community. What is data assimilation? Let
us assume that some observations of the Sun are available
over a finite time interval [ts, te] and that a numerical
model governing the temporal evolution of the Sun over
this interval is available. In a deterministic setting, the
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dynamic trajectory of the Sun is then entirely controlled
by a set of initial conditions (at t = ts) and, possibly, by
a set of static control parameters.

In a first attempt of combining data and model, one
can simply use the observations made at the Sun sur-
face as boundary conditions to impose on the numerical
model between ts and te. Such a strategy was followed
by Dikpati & Gilman (2006); Choudhuri et al. (2007);
Upton & Hathaway (2014) for the predictions of the am-
plitude and timing of the solar cycle and by Cheung &
DeRosa (2012) for eruptive events originating from ac-
tive regions. This strategy is, however, not optimal, in
particular because it does not combine the uncertainties
affecting the observations and the physical model.

More advanced techniques exist to remediate this prob-
lem, which can be classified into two categories: varia-
tional and sequential. Both share the same goal, which is
to provide a least-variance statistically optimal fit fit to
the unknown reality (in a generalized least-squares sense)
over the time window [ts, te] over which observations are
available (which we will refer to indifferently as the ob-
servation or sampling window in the following). Vari-
ational assimilation provides a globally optimal fit over
the whole time window. Sequential assimilation provides
an optimal fit at the end of the window. The variational
approach is rooted in the mathematical theory of control
and aims at correcting the initial conditions (and possi-
bly the set of static control parameters) by making use
of all the data available over the entire [ts, te] interval. In
contrast, the sequential approach rests on estimation (or
filtering) theory. In that case, the stream of observations
is assimilated sequentially, each time a new observation
becomes available at, say, t = to ∈ [ts, te]. The sequen-
tial and variational approaches lead to the same results
at the end of the assimilation window if the dynamics
of the system is linear. More generally, and regardless
of their respective merits, both approaches illustrate the
same philosophy of combining data with numerical mod-
els. Both can lead to the production of a forecast for
t > te and are indeed used on a daily basis for the best-
known problem of weather forecast, which requires sev-
eral tens of millions of data to be assimilated every day
into physical models of the atmosphere (and ocean), to
first initialize a state (or ensemble of states) of the atmo-
sphere (and ocean) and subsequently generate weather
forecasts (see e.g. Kalnay 2003).

The problem at hand may involve some nonlinearities,
for instance, in the dynamics or in the relationships link-
ing the state of the system to the available observations.
If so, both sequential and variational approaches need be
adapted. In practice, this amounts to performing a lin-
earization at some stage in the analysis. In the case of
the sequential approach, this leads to a class of methods
known as the extended Kalman filter (EKF) and the en-
semble Kalman filter, the latter commonly known as the
EnKF (Evensen 2009). In the variational framework, the
most popular approach is the so-called 4D-Var approach,
whose efficiency rests on the implementation of the so-
called adjoint model (see Talagrand 2010; Fournier et al.
2010, for a recent review).

Regardless of the assimilation approach followed, the
first question one may ask when seeking to apply data
assimilation to the prediction of the solar cycle is: What
type of numerical model of the origin of solar magnetism

should be used? Indeed, in spite of some recent encourag-
ing progress made by 3D magnetohydrodynamic (MHD)
simulations to self-consistently produce ”solar-like” mag-
netic features (Ghizaru et al. 2010; Käpylä et al. 2012;
Warnecke et al. 2014; Augustson et al. 2015), some of the
ingredients needed to account for all the properties of the
solar cycle remain to be understood. In particular, full
3D MHD simulations are not able to self-consistently pro-
duce, through an internal dynamo mechanism, sunspots
emerging at the solar surface [refer to (Nelson et al. 2013;
Fan & Fang 2014) for a first step in that direction]. The
first attempts to apply data assimilation to solar physics
have instead used simplified mean-field dynamo models,
where strong simplifying assumptions are used and var-
ious physical processes are parametrized. These models
are nevertheless solar-like in the sense that they produce
reversals of the large-scale magnetic field and butterfly
diagrams resembling the observations. Sequential data
assimilation has been implemented for the first time by
Kitiashvili & Kosovichev (2008) in such a mean-field dy-
namo model evolving jointly (in one spatial dimension)
the three components of the magnetic field and a mea-
sure of magnetic helicity. The assimilated observations
were the annually smoothed Wolf sunspot number for
the period 1857-2007, in a sequential EnKF framework.
The 1D model used in that study was a standard α− Ω
dynamo model in which the toroidal field owes its origin
to the differential rotation (the Ω-effect) and the poloidal
field is created by helical turbulence within the solar con-
vection zone (the α-effect). The prediction for the max-
imum sunspot number of Cycle 24 was 80 in 2013. This
is remarkably close to the observed value of 82 for the
amplitude of the cycle, and too early by 1 year for the
timing of cycle maximum. Further Cameron & Schüssler
(2007) advocate that such predictions done within 3 years
of the minimum are easier, as simple correlations reach
up to 80% or so of success when applied to past cycles.
More recently, data assimilation was performed with a
more complete 2D mean-field αΩ Cartesian model us-
ing the 4D-Var variational approach (Jouve et al. 2011);
it was shown that the latitude-dependent profile of the
α-effect could be reconstructed from the assimilation of
synthetic magnetic data and that the method was ver-
satile and robust, which encouraged us to improve our
model and method.

Such an improvement in the modeling can take the
form of a flux-transport Babcock-Leighton model in
which the poloidal field is generated by the decay of ac-
tive regions emerging at the solar surface (Babcock 1961;
Leighton 1969), and where a large-scale meridional flow
vp acts to advect the magnetic field in the whole con-
vection zone. The main strength of such models is that
they incorporate physical processes which have observ-
able counterparts, namely the active region evolution at
the solar surface and the meridional circulation ampli-
tude and pattern. For the latter however, the observa-
tional constraints are limited. Most of our knowledge of
vp is provided by local helioseismology techniques which
produce reliable measurements down to about 20 Mm
to 40 Mm below the surface (Haber et al. 2002; Zhao
et al. 2004). We now know that the surface meridional
flow is poleward and that the horizontal velocity ampli-
tudes are between 10 and 20 ms−1. Inferences from the
advection of super granules down to a depth of 70 Mm
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(Hathaway 2012), from p-mode frequencies (Mitra-Kraev
& Thompson 2007) and improved time-distance analysis
(Zhao et al. 2013; Jackiewicz et al. 2015) suggest a com-
plex structure in the convection zone, organized in mul-
tiple cells, as also confirmed by recent global helioseismic
methods (Schad et al. 2013).

Given the strong dependence of the magnetic cycle
on the meridional flow amplitude and profile in flux-
transport Babcock-Leighton dynamo models (Jouve &
Brun 2007), the idea we pursue is to use data assimilation
to better constrain this flow. More specifically, our goal
is to use time-dependent observations of the magnetic
field to find the optimal meridional flow vp (in struc-
ture and amplitude) that minimizes the misfit between
the observations and the values predicted by the model.
To this end, preliminary studies have been performed
to first characterize the sensitivity of the magnetic field
evolution to changes in vp (Nandy et al. 2011; Dikpati
& Anderson 2012) and to assess the so-called forecast
horizon, i.e. the time interval (for t > te) over which re-
liable predictions can be achieved (Sanchez et al. 2014).
These studies concluded that a modification of the am-
plitude of vp would show large changes in the evolution
of the magnetic field in a time much shorter than the
typical circulation time. Sanchez et al. (2014) provided
an estimate of the exponential growth rate of an initial
perturbation on the model trajectory (the error growth
rate), and found a corresponding e-folding time of 2.76
solar cycles, which is likely an over-estimate of the prac-
tical horizon of predictability for the Sun. These results
are promising for the possible use of magnetic field data
to infer the meridional flow profile and quite encourag-
ing for possible future predictions of solar activity. Now
that some key properties of this dynamical system (as-
sociated with this particular Babcock-Leighton dynamo
model) are known, we can further consider to apply data
assimilation techniques to it. In a recent paper, Dikpati
et al. (2014) resorted to the EnKF in order to reconstruct
the meridional flow speed at the solar surface (having
fixed the meridional flow profile to one large circulation
cell per hemisphere) from synthetic observations of the
magnetic field. Dikpati et al. (2014) found that the best
reconstruction of this unique, time-dependent, parame-
ter could be obtained provided at least 10 observations
were used with a time between two analyses of 15 days
and an observational error of less than 10%. We propose
here to work along the same philosophical line, aiming
this time at estimating not only the amplitude of vp at a
particular location, but also its structure throughout the
whole convection zone. To do so, we use a variational
data assimilation (4D-Var) technique akin to that devel-
oped by Jouve et al. (2011). We intend to demonstrate in
the following the successful application of 4D-Var to fully
characterize the otherwise poorly constrained solar inter-
nal meridional flow vp, by resorting to proof-of-concept
experiments based on a particular flux-transport dynamo
model. Proof-of-concept experiments rely on data gen-
erated by a free run of the model (a run unconstrained
by real data); those synthetic data are subsequently used
to verify and test the efficacy of any given assimilation
scheme.

After presenting the details of the model in Sec. 2,
we introduce our implementation of 4D-Var in Sec. 3.
The results of proof-of-concept assimilation experiments

Figure 1. Stream functions for the 3 cases studied [(a), (b) and
(c) for cases 1, 2 and 3 respectively]. Case 1 is the unicellular
model, case 2 is the 4-cell model, and case 3 is the asymmetric
model. We indicate the base of the convection zone at r = 0.7Rs
with a broken line in each plot.

with perfect data (i.e. without noise) are presented in
Sec. 4, while results for noised data are given in Sec. 5.
A discussion of the consequences of this study is next
given as a conclusion in Sec. 6.

2. ONE MAJOR INGREDIENT: THE MERIDIONAL
CIRCULATION

In this work, we choose to test our data assimilation
technique with a spherical, axisymmetric mean-field dy-
namo model. We adopt the widely used flux-transport
Babcock-Leighton model for which the meridional flow
vp profile and amplitude is a major ingredient (Dikpati
& Charbonneau 1999; Jouve & Brun 2007). The model
equations are presented in Appendix A for reference. In
this section, the meridional circulation, which is to be
optimized by the assimilation, is described in detail.

The meridional circulation is henceforth expressed as
the curl of a stream function, to ensure a divergence-free
velocity field:

vp = ∇× (ψeφ), (1)

and the stream function is expanded as

ψ(r, θ) = −2(r − rmc)2

π(1− rmc)

×


m∑
i=1

n∑
j=1

di,j sin
[
iπ(r−rmc)

1−rmc

]
P 1
j (− cos θ) if rmc ≤ r ≤ 1

0 if rbot ≤ r < rmc,
(2)

where the length is normalized with the solar radius Rs,
the normalized radius r varies between rbot = 0.6 and
rtop = 1 and the polar angle θ ∈ [0, π]. The merid-
ional flow is allowed to penetrate to a radius rmc = 0.65,
i.e. slightly below the base of the convection zone lo-
cated at rc = 0.7. There is no flow between rbot and
rmc, which models a stationary layer of transition from
the convection zone to the radiative zone. The magnetic
diffusion time R2

s/ηt is chosen as the characteristic time
scale, where ηt is a typical value of the turbulent mag-
netic diffusivity (of order 1012cm2s−1) in the convective
envelope.
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Case d1,2 d2,1 d2,2 d2,3 d2,4
1 3.33× 10−1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 9.47× 10−2

3 0.00 −5.74× 10−2 −8.75× 10−2 −3.83× 10−2 5.47× 10−2

Table 1
Coefficients of the 3 models characterizing the meridional flow based on expression (2) (see text for details). Coefficients that do not

appear in this table are set to zero.

Three different profiles of the meridional flow are con-
structed using 3 different sets of expansion coefficients
{di,j}i∈1,m,j∈1,n in Eq. 2. The size of the parameter
space used in the following sections is m = 2, n = 4,
which is an 8D parameter space. Those coefficients are
given in Table 1. The non-listed coefficients are set to
zero. We note that one can rewrite the expansion of
the flow field [e.g. eq. (2)] using separable radial and
latitudinal parts. The control vector would then be the
expansion coefficients of the radial part and latitudinal
part, resulting in a parameter space of lower dimension
(m + n vs mn). We however find that this results in a
larger misfit in the assimilation procedure.

Case 1 is a unicellular stream function (in each hemi-
sphere), case 2 is a 4-cell stream function with 2 cells in
radius and 2 in latitude (in each hemisphere), case 3 is
a more general model with 4 cells in the Northern hemi-
sphere and only 2 cells in radius in the Southern hemi-
sphere. Figure 1 shows the contour plots of the stream
functions of the meridional circulation of Cases 1, 2 and
3. The other physical parameters of the 3 cases are given
in Appendix A. From surface observations of the hori-
zontal flows done by Ulrich (2010) and after projecting
the data on associated Legendre polynomials P 1

` (θ), we
note that the dominant mode is ` = 1, and that ` modes
beyond ` = 4 are at least 3 orders of magnitudes smaller.
We thus consider that stopping our latitudinal expansion
of the streamfunction to n = 4 is providing a fair recon-
struction of the flow field. Figure 2 shows the resulting
butterfly diagrams for the toroidal field at the base of
the convection zone and the surface radial field. Those
aspects are further documented in Appendix E.

3. SETTING UP THE ASSIMILATION PROCEDURE

The physical model has now been described. The con-
trol vector, which is adjusted to fit the observational
data, has been chosen to be the expansion of the merid-
ional flow profile on particular radial and latitudinal
functions (Eq 2). The idea of this work is to apply a
variational data assimilation technique [or 4D-VAR, see
Talagrand & Courtier (1987) for details] to this model,
in which one seeks to minimize the misfit between the
observations and the outputs of the model (character-
ized by an objective function J ) within a certain time
interval. As a first step, we wish to proceed with twin
(closed-loop) experiments where the magnetic data are
produced by a free run of the model, as described for
instance in Jouve et al. (2011). The assimilation will be
considered successful when the true state (the value of
the control vector which was used to produce the obser-
vations) is recovered (to a certain accuracy) as a result
of the minimization of the objective function. In this
section, the setup of these twin experiments is described:
the generation of magnetic data, the choice of the objec-
tive function and the minimization algorithm, the choice

of initial guess and finally the diagnostics to assess the
quality of the assimilation technique.

3.1. Generating synthetic observational data

In our twin experiments, the synthetic observations are
generated by the direct Babcock-Leighton dynamo model
governed by eq.(A3) and (A4), with the expansion coef-
ficients of the meridional circulation eq.(2) given by Ta-
ble 1. The other parameters as well as the grid size are
given in Table 3 of Appendix A. In each case the syn-
thetic observations are the toroidal field at the tachocline
and the vector potential of the surface poloidal field.
These are taken from the reference trajectories of the
magnetic field of the 3 cases described in section 2, which
are magnetic fields as a function of space and time, with
dipole field as initial conditions, recorded when the peri-
odic regime has been reached. The cycle period is ∼ 22
years for all three cases (see Table 3). Our choice of syn-
thetic data is motivated by the future application to real
solar observations: the toroidal field at the tachocline is
indeed thought to be a proxy of the sunspot distribu-
tion and the vector potential of the surface poloidal field
should be a good proxy for the observed surface radial
magnetic field, since the radial field is the spatial deriva-
tive of the vector potential. Our synthetic magnetic data
are thus chosen to mimic what real solar observations
provide (sunspot number, polar cap field, butterfly dia-
grams, etc...).

For the purpose of our twin experiments, we first in-
troduce our synthetic observations into our assimilation
code, and analyze the converging behavior and perfor-
mance of the code at various temporal observation win-
dows as well as various spatial sampling in latitudes. Sec-
ondly, we add random noise to the synthetic observations
and study the effects on the performance and accuracy of
the optimization. The noise added is centered, normally
distributed, with standard deviation being a fraction of
the root mean square (r.m.s.) of the magnetic field com-
ponents produced by the dynamo model. Examples of
synthetic observations for case 3 (error-free and noised
with a noise level of 30% of r.m.s.) are shown in Figure
3, and the counterparts of cases 1 and 2 are similar thus
not shown here.

3.2. Choice of the objective function and minimization
algorithm

As stated above, the idea of the variational method
is to minimize a well defined objective function which
measures the misfit between the observed quantities and
corresponding outputs from the model. The objective
functions being studied are the misfit of the toroidal field
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(a)

(b)

(c)

Figure 2. Butterfly diagrams for the 3 cases studied [(a), (b) and
(c) for case 1, 2 and 3 respectively], with toroidal field at the base
of the convective zone (top panel) and surface radial field (bottom
panel), and are normalized with their maximum respectively. Case
1 is from the simplest unicellular model, case 2 is from the 4-cell
model, where the surface radial field shows the imprint of the 2
counter-cells. Also note the asymmetric nature of the butterfly
diagram of case 3, while still maintaining a mostly anti-symmetric
(dipole-like) solution. We mark a typical sampling window of width
1.5 solar cycles in each case with dashed lines.

at the tachocline (rc = 0.7Rs),

JB =

Not∑
i=1

Noθ∑
j=1

[
Bφ(rc, θj , ti)−Boφ(rc, θj , ti)

]2
σ2
Bφ

(rc, θj)
, (3)

Sample of noised Aφ (surface,lat.=+35 °)
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time (year)
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100

A
φ

Aφ , noise level = 30% rms
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Figure 3. Typical synthetic data generated in case 3, here we
show the surface vector potential of the poloidal field at a fixed
latitudinal location as a function of time.

and similarly the misfit of the poloidal field vector po-
tential at the solar surface,

JA =

Not∑
i=1

Noθ∑
j=1

[
Aφ(Rs, θj , ti)−Aoφ(Rs, θj , ti)

]2
σ2
Aφ

(Rs, θj)
, (4)

and their sum, JA + JB ,
Here Bφ is the toroidal field predicted by our mean

field dynamo model, and Boφ is the synthetic observation.
The weight σBφ is the r.m.s. of the error-free toroidal
field from the observations, and similarly for Aφ, Aoφ and
σAφ . In real observations, σ can also be time as well
as space dependent and can be adjusted to give more
weight to some observations which are more reliable than
others. For example, introduction of more advanced in-
struments would produce higher accuracy in more recent
observations. The expression is summed over all the spa-
tial observations in latitude (No

θ ) and temporal observa-
tions (No

t ), so that the total number of observations is
No = No

t N
o
θ .

The objective function is minimized with a quasi-
Newton method, which requires the evaluation of the ob-
jective function J and its gradient ∇J with respect to
the control vector, but does not require the exact compu-
tation of the Hessian, which is instead approximated it-
eratively by the Broyden-Fletcher-Goldfarb-Shanno for-
mula. In our calculations, we use the minimization rou-
tine m1qn3 developed by J. Gilbert and C. Lemaréchal
(Gilbert et al. 2009) based on this algorithm. J and ∇J
are computed following the integration of the forward
and adjoint models, respectively, details of which can be
found in Appendix A and Appendix B, respectively. At
the optimum, ∇J should be zero. Therefore, in the as-
similation procedure, the stopping criterion is defined by
|∇J |/|∇J0|, which is the ratio between the magnitude
of the gradient of the objective function (with respect to
the control vector) after each iteration and the magni-
tude of the gradient at the initial guess (∇J0). We call
this ratio the convergence criterion. In our twin experi-
ments, the assimilation will terminate when the criterion
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|∇J |/|∇J0| drops below 10−6.
Unless otherwise stated, we present the results and

analysis adopting the objective function as the sum of
the misfit on toroidal field at the tachocline and on the
surface poloidal potential, J = JB + JA. Most of the
tests conducted with this choice give reasonable estimate
of the meridional flow so that we can discuss any possi-
ble trends based on these results. The effect of choosing
only JA or JB as our objective function has also been
investigated and is discussed in Section 4.5. In general,
the performance is less satisfactory in terms of both the
misfit and the recovered flow pattern if only Aoφ or Boφ
are chosen for assimilation. Note that we are here using
the toroidal field at the tachocline which in a realistic
situation is not directly available unless one develops an
operator that relates surface field observations to the field
located at the base of the convective envelope. Such a
relationship will be the focus of future work; suffice it to
say here that one could for instance resort to the three-
halves law proposed by Bracewell (1988).

3.3. Choice of initial guess for vp and initial condition
for B

The assimilation code requires an initial guess for both
the meridional flow vp and the magnetic field B as a
starting point of the minimization. Our initial guess for
vp is always that of a unicellular flow, as we anticipate
that this is the guess we will most likely make in an op-
erational setting (when dealing with real data). For case
1 (the unicellular case, recall Figure 1a), our initial guess
for vp is therefore a unicellular flow, but one which yields
a magnetic cycle of 44 years (we thereby avoid consider-
ing an initial vp too close to the true vp). For cases 2
and 3, we pick a unicellular vp producing a 22-yr cycle.
Let us stress that the performance of the assimilation
method is in all 3 cases stable with respect to the period
of the cycle determined by the choice of initial unicellular
vp, up to a certain margin. This margin shrinks as the
complexity of the true vp increases. This statement is
further illustrated by some examples in Appendix D.

How do we set the initial condition (at t = t0, say) for
B? This is crucial since this choice determines the phase
difference between the modeled field and the observed
one, once the modeled dynamo has entered its periodic
regime. Too large a phase lag can be detrimental to the
optimization, to the point where it can simply fail, in par-
ticular if the true vp is substantially different from the
initial guess we just described (which is what happens for
cases 2 and 3). A possibility is to add B0 ≡ B(t = t0)
to the control vector, and perform an optimization of J
by adjusting both vp and B0. That amounts to modi-
fying the adjoint model (described in its current form in
Appendix B) in order to take the extra sensitivity to B0

into account. The strategy that we choose for this study
is slightly different, and takes advantage of the periodic
nature of the system we are interested in. We take differ-
ent trials for B0 by sampling regularly a magnetic cycle
produced by the integration of the dynamo model based
on the initial guess of vp. In this framework, the best B0

is the one leading to the most successful optimization of
vp, following the diagnostics described in the next sub-
section. In practice this involves multiple trials with an
ensemble of initial conditions for assimilating a single

set of observations, and requires considerable computer
time. As we will demonstrate in the upcoming sections,
using this approach we have always successfully found
an initial B0 that leads to a good final estimation of the
meridional circulation vp. We encourage the interested
reader to read Appendix C where we give more details
on the strategy used to initialize the data assimilation
algorithm. One should also note that when trying to
do a forecast, the initial condition is usually taken from
the previous assimilation cycle, and is consequently much
closer to the sought one than in the worst-case scenario
that we consider here.

3.4. Diagnostics to assess the quality of the assimilation

The success of the assimilation depends on whether
the estimated expansion coefficients di,j converge satis-
factorily to their true value. If convergence is achieved,
we assess the quality of the assimilation procedure by
studying the number of iterations required to achieve a
given accuracy and the value of the misfit at the end of
minimization. In general, for a given set of observations,
the assimilation halts when the magnitude of the gradi-
ent of the objective function decreases by a preset factor.
This indicates that the misfit is minimized but from this
alone there is no information about the accuracy and
uniqueness of the optimal solution. However, in twin ex-
periments, as observations are artificially generated by a
known true state, the accuracy of the assimilation can be
studied quantitatively by defining the following (relative)
discrepancy:

∆p

p
=

√√√√√√√√
m∑
i=1

n∑
j=1

(
di,j − di,j true

)2
m∑
i=1

n∑
j=1

d2
i,j true

, (5)

here the coefficients with subscript true are the ones used
to generate the synthetic observations (see Table 1). This
discrepancy is the Euclidean metric between the esti-
mated control vector and its true counterpart, normal-
ized by the norm of the true vector.

In Sec. 5, when our synthetic observations are noised,
we can measure the performance of the assimilation tech-
nique by the normalized misfit defined by

Jnorm =
1

ε

√
J
N
, (6)

where ε is the level of noise introduced (as a fraction of
r.m.s. of the field trajectory) and N is the total number
of observations. The fraction ε is used instead of the ab-
solute standard deviation because from Eqs. (3) and (4),
the objective functions are already normalized with the
r.m.s value. In our case, the observations are (unless oth-
erwise noted) the tachocline toroidal field and the surface
potential vector, implying that N = 2No. Statistically,
an assimilation trial with ideal fitting of data will give
Jnorm ∼ 1, while Jnorm � 1 implies under fitting where
the misfit is considered too large. On the other hand,
Jnorm � 1 implies over fitting, given what is expected
from the statistics.

4. RESULTS USING DATA WITHOUT NOISE
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In this section, we investigate the quality of conver-
gence of the assimilation for cases 1, 2 and 3 when the
observational data are perfect, i.e. when they are realiza-
tions of the direct model and are not perturbed. The re-
sults of this section will be used for a systematic analysis
and testing of the assimilation method and will serve as
reference for the following section where noise is added.
We first show the efficiency of our assimilation technique
on an ideal case, with a reference distribution of obser-
vations. We then study the behavior of our technique
when we vary the sampling of observations both in time
and latitude. We focus on the effect of (i) the width of
temporal windows over which observations are available,
(ii) the temporal sampling, (iii) the latitudinal sampling.
We investigate each of the above for case 1 and illustrate
some typical examples for the 2 other cases for compari-
son.

4.1. Recovery of true flow and observed magnetic field
in an ideal case

An illustrative example is considered here, for the three
cases. The distribution of observations is uniform in lat-
itude (∆θ = 2.83o) and time (∆t = 33 days) and the
observational window has a width te − ts = 1.5 cycles.
We show how the stream functions evolve from the uni-
cellular initial guess to the final structure after assimila-
tion. Figures 4 (a), (b), and (c) show the evolution for
cases 1, 2, and 3 respectively. We can see that in cases
2 and 3, new cells appear at the expense of shrinking
existing cells, and that it takes more iterations for the
multi-cellular asymmetric structure to develop in case 3
compared to the relatively simpler case 2. Note that
in cases 1 and 2, the intermediate states of meridional
circulation as the minimization proceeds are always an-
tisymmetric with respect to the equator, since the sym-
metry of predicted values is preserved throughout the al-
gorithm. For case 3, the synthetic data are asymmetric,
and the meridional flow slowly shifts from the symmet-
ric prior to a more adequate asymmetric structure, as
shown in Figure 4 (c). In all cases, the basic structure
of the meridional circulation is rapidly and nicely recov-
ered. In the last 10 iterations, it comes to fine adjust-
ments to further decrease the data misfit. This confirms
that a unicellular prior is an appropriate initial guess,
and it also demonstrates the potential of our assimila-
tion method that can recover meridional circulation flow
with multi-cellular and asymmetric profiles with respect
to the equator as well as its deeper inner structure.

We now focus on the associated magnetic fields we get
from the recovered meridional flow at the end of the
assimilation procedure. In Figure 5, we show for case
3, the magnetic fields at latitude +35◦ as a function of
time (any other latitude yields similar results), (i) from
the dynamo run with the initial guess for the meridional
flow (green curve), (ii) from the dynamo run using the
true meridional flow (orange curve), (iii) from the dy-
namo run with the final estimate for the meridional flow
(blue curve), and (iv) from the synthetic observations
(red crosses). The field trajectory from the true merid-
ional circulation nearly overlaps with the trajectory from
the final estimate and they are hardly distinguishable.
We thus successfully recover the magnetic field trajec-
tory from the free dynamo run with a minimal misfit for
case 3, and similarly for all other cases showing conver-

gence.
By assimilating synthetic observations with varying

No, No
θ , No

t , we find that a minimum No is required to
estimate a vp which effectively minimizes J , and that the
accuracy of the estimate decreases when the width of the
assimilation window te − ts is too short. The unicellular
case is the most tolerable, with an estimate of vp accu-
rate down to ∆p/p ∼ 10−6 with No = 9 and te−ts = 0.5
solar cycle only. For the 4-cell case 2, the lowest possible
observations ingested in the tests leading to success is
No = 84, with te − ts = 1.5 solar cycles. Fewer obser-
vations results in optimization failure and a decrease of
te− ts causes a drop of accuracy of the estimate. For the
most complicated asymmetric case 3, the smallest No is
found to be No = 966 for a te − ts = 1.5 solar cycles.
Decreasing No and te − ts have similar consequences as
for case 2. In general, we also find that increasing No

θ
is more efficient in improving the convergence rate than
increasing No

t .

4.2. Convergence behavior vs observational window
width

First, we investigate the convergence behavior of the
twin experiment, at a fixed sampling frequency of ∼ 1
month (33 days) of observations, i.e., ∆t is kept con-
stant, and further No

θ is constant, with 63 observations
evenly distributed in colatitude from θ = 0 to π, i.e.,
∆θ = 2.83◦. Observations are taken regularly in time so
the width of the sampling window te− ts increases as No

t
increases. In this study the temporal window width te−ts
varies from 0.5 solar cycle to about 2 cycles. In each as-
similation trial, we investigate the relation of J /J0 and
∆p/p with the corresponding iteration count respectively
(J0 is the value of objective function at the initial guess
of meridional circulation). The results are shown in Fig-
ure 6. In all cases the nomralized objective functions
J /J0 [panel (a)] and the discrepancies dp/p [panel (b)]
diminish as the iteration count increases, showing that
the optimization method is giving an improved estimate
of meridional circulation after each iteration, thereby re-
ducing the misfit between the observations and the field
predicted by the dynamo model. Note that the objec-
tive function and discrepancy can get to extremely small
values (∆p/p < 10−5) in case 1 compared to cases 2 and
3. This is because the initial condition of the assimila-
tion is always the dynamo field from the unicellular flow
model, and the synthetic observations in case 1 are also
from the same unicellular profile (but the strength of the
flow is not the same so the assimilation is not trivial),
so the model prediction is essentially the same as the
synthetic observations when the true meridional circula-
tion is recovered. While in cases 2 and 3, assimilation is
initialized using a 1-cell configuration which is different
from the 4-cell and asymmetric profiles used to generate
the synthetic observations, resulting in a more challeng-
ing minimization, making it more difficult to reach the
absolute minimum. As shown, the latter is of the order
> 10−2, even when the synthetic observations are noise-
free. Nonetheless, we are still able to reconstruct the true
flow and the trajectory of the field (which will be shown
in the following sections). The number of iterations re-
quired (for a fixed convergence criterion) increases as the
complexity of the model increases: case 1 requires fewest
iterations and case 3 requires most iterations. In case 3,
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Initial guess
Optimization−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Final estimate

(a)

(b)

(c)

Figure 4. Evolution in iteration count of assimilation of the meridional circulation for (a) case 1, (b) case 2 and (c) case 3. In case 1, from
left to right, we show the stream function at the 1st, 3rd, 5th, 10th, 19th iteration. Note the change in the color mapping which shows the
evolution of the model. For case 2, from left to right, we show the stream function at the 1st, 3rd, 10th, 25th, 52nd iteration, and for case
3, from left to right, we show the 1st, 30th, 50th, 65th, 94th iteration. For cases 2 and 3, note that the stream function eventually evolves
from the unicellular initial guess to the appropriate multi-cellular configuration.

only the trial with a sampling window of width 1.5 cycles
can give a discrepancy of 10−2 (others are higher), as the
objective function for such a complex meridional flow is

also complicated and difficult to be optimized. In some
situations, the assimilation algorithm terminates at a lo-
cal minimum of the objective function in the parameter
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Figure 5. Vector potential of poloidal field at a given location as
a function of time for case 3 (asymmetric meridional circulation).
Shown are the time series of the reference (dashed orange line), the
initial guess before assimilation (in green), the final estimate after
assimilation (in blue), and the synthetic observations made at that
location (red crosses).

space, like the trials in case 3 with temporal windows of
1.0 cycle and 2.0 cycles. In those cases, the performance
in terms of minimization of misfit are lower than that of
the 1.5 cycles trial.

For all cases, a short sampling window of 0.5 cycle
lowers the accuracy of the results (see the blue curves
in Figure 6), as the short observation window may not
provide enough constraints on the meridional circulation.

Another feature of the assimilation method is that the
accuracy increases slowly at the beginning of the itera-
tion, and speeds up eventually as the improved forecast
gets closer to the true state, where the objective func-
tion is close to quadratic. This is a characteristic of the
assimilation algorithm. As the meridional circulation be-
comes more complicated, it takes more iterations for the
estimated control vector to reach the region of quadratic
convergence.

In this particular study of the impact of the sampling
window width on the quality of the assimilation, we find
that a window width of 1.5 cycles gives on average the
best a posteriori fit to the observations.

4.3. Convergence behavior at different sampling
frequencies

From the previous section, we identified that the op-
timal observational window width te − ts for almost all
cases was 1.5 cycles. We thus now fix this temporal win-
dow width and investigate the effect of changing the sam-
pling frequency. Spatial sampling is held constant and
evenly distributed (∆θ = 2.83◦). The results are shown
in Figure 7. We see that the convergence behavior is rel-
atively insensitive to the change in sampling frequencies,
with only one exception for case 3. The highest sam-
pling frequency shown at ∆t = 33 days corresponds to
No
t = 181 , while No

t = 16 for the sparsest sampling,
∆t = 396 days. The sparsest sampling consists of a
total of No = 1008 observations, which is sufficient to
estimate the 8 expansion coefficients of the meridional
flow, provided that the sampling window is wide enough

to characterize the flow. We thus find that in all these
cases where No � 8, having more temporal observations
within a fixed sampling window does not introduce any
new characteristics to the objective function during the
assimilation process. However, the trial with the spars-
est sampling in case 3 is an exception as the true merid-
ional flow is the most complex. This probably requires
more frequent observations to correctly estimate the flow
structure. Overall, a sampling frequency of one month
to a trimester seems adequate when considering the per-
spective of using real solar data.

4.4. Convergence behavior at different latitudinal
samplings

In this section, we fix the temporal window to 1.5 cy-
cles and sampling frequency to 1 month. We now in-
vestigate the results of the assimilation procedure when
the distribution of observations in latitude is varied. We
show the results with (I) uniform sampling in latitude,
(II) nonuniform sampling: sampling in one hemisphere
only and sampling in the activity band only (latitude
−45o to +45o). The results for (I) and (II) are shown
in Figure 8. For (I) [panel (a)], there is no systematic
trend relating the sampling density and convergence be-
havior. Unlike the situation of changing sampling fre-
quencies, the objective function is more sensitive to a
change of sampling density in latitudes, and a denser spa-
tial sampling does not necessarily result in faster conver-
gence. A latitudinal sampling of ∆θ = 4.25◦ requires the
least iterations for convergence for cases 1 and 2, but the
∆θ = 2.83◦ sampling results in higher accuracy. For case
3, the sparsest spatial sampling fail to converge and as-
similation stops eventually without significant optimiza-
tion, showing that for a flux-transport dynamo with a
complex flow, more spatial observations are needed to
estimate the flow structure.

In (II) [panels (b) and (c)], a uniform sampling always
gives better convergence than other nonuniform patterns
for the same number of observations. Again, case 1 gives
the smallest misfit and discrepancy. For sampling in one
hemisphere only, notice the following features:

(i) In case 1, the convergence paths shown for sampling
in the Northern or Southern hemisphere only coincide.
Indeed, since the data and prior are both antisymmet-
ric about the equator, the resulting normalized objective
functions J /J0 [panel (b)] are exactly the same. Note
however that for case 2, which is also antisymmetric, the
results for the Northern and Southern hemisphere are
close but not exactly the same. This is due to the fact
that the initial condition for the assimilation is unicel-
lular and the system has thus to undergo a transient,
resulting in not exactly the same steady states for both
trials. This is not true for case 3 where the model is
asymmetric.

(ii) Although the discrepancy from the true state is
significantly higher than in the case with uniform sam-
pling, the meridional flow in the whole domain can be
recovered by sampling in one hemisphere only, even for
the asymmetric case 3. This can be explained by the fact
that we do not try to reconstruct the point-wise merid-
ional flow but look for the coefficients of a particular ex-
pansion (eq.2), which implies certain symmetries. Also,
this shows that the magnetic observations in one hemi-
sphere give information for the meridional circulation in
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Figure 6. Optimization of objective function (left) and increase in accuracy (right) as the iterative minimization proceeds, at a fixed
sampling frequency of ∼ 1 month (33 days), for varying assimilation window widths. No

t = 61, 121, 181 and 241 correspond to sampling
windows of width 0.5, 1.0, 1.5 and 2.0 solar cycle(s), respectively. Here and on the plots which follow, we indicate case 1, case 2 and case
3 with solid lines, crosses and broken lines respectively. The number of observation points in latitude is the same for all cases (No

θ = 63).
The convergence rate increases with the number of iterations, i.e., when the predicted state gets closer to the true state.
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Figure 7. Increase of accuracy as the minimization proceeds, at
various temporal sampling frequencies, for a fixed assimilation win-
dow of width 1.5 solar cycle and a fixed number of observation
points in latitude (No

θ = 63). The effect of the sampling frequency
on the convergence is less significant than that of the temporal
window width, except for the most complex asymmetric case with
the sparsest temporal sampling.

the other hemisphere by various physical processes like
hemispheric coupling. It thus demonstrates the global
structure of the magnetic field produced in these mod-
els.

(iii) Let us now focus on case 3 with observations in
the Northern hemisphere only [black dashed line in Fig-
ure 8(c)]. As there is no constraint on the hemisphere
where the field is not sampled, the optimization algo-
rithm gives a state which is slightly different from the
true flow. This is illustrated in Figure 9(a) where the
result for the meridional flow is shown at the end of the
assimilation. Compared to Figure 1(c), we see that the
Northern hemisphere where observations are available is
much better recovered than the Southern hemisphere,
although the recovery is still quite satisfactory in the
Southern hemisphere (as stated before, the initial guess
was indeed a unicellular flow). To have more quantitative
estimates of the quality of the recovery of the solution in

this case, we plot the deviation between the forecast and
the true trajectory for the magnetic poloidal potential
at some selected latitudes in Figure 10. We find that
during the observational window, the misfit on Aφ in the
Northern hemisphere is of the order of half a percent
when it is about 10 times higher for the Southern hemi-
sphere (which is still a low value given the fact we have
no observations in this hemisphere). This figure also il-
lustrates that the deviations start to grow after the end
of the observational window, with a faster growth in the
Southern hemisphere. This indicates that the reliability
of the prediction decreases quite quickly when observa-
tions are no longer available. Typically here in about 1
or 2 cycles, the benefit of data assimilation is lost.

For the other latitudinal samplings considered for case
3, namely in the Southern hemisphere only and activity
band only, we find similar results. The recovery of the
flow is shown in Figure 9(b) and (c). We note that when
the observations are available in the hemisphere where
the flow is less complex [panel (b)], the structure of the
flow in the other hemisphere is quite different from the
true one. Indeed, in this case, the algorithm probably
stopped in a local minimum and the final value of the
discrepancy stays very high (∆p/p ∼ 1), as seen in Fig-
ure 8(c) (red dashed line). However, when observations
are available in the activity belt only [panel (c) of Fig-
ure 9], the structure of the flow is much better recovered
and the discrepancy drops to a value of less than 10%.

From the above systematic study of the sampling pat-
terns, a temporal observational window of 1.5 solar cy-
cles with monthly sampling and uniform in latitude (with
∆θ = 2.83◦) gives relatively robust convergence among
all the trials (though not necessary giving the fastest con-
vergence in all 3 cases). Therefore, for illustration pur-
poses, we will use this reference sampling in most of the
analysis and demonstrations below.

4.5. Other characteristics of the convergence

We here study some additional properties of the min-
imization procedure. We first focus on the choice of
the objective function. We can choose to assimilate the
tachocline toroidal field or surface potential vector only,
i.e. using the objective functions (3) or (4) for optimiza-
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Figure 8. Evolution of ∆p/p as minimization proceeds for vari-
ous uniform spatial samplings [panel (a)] and of J /J0 and ∆p/p
for nonuniform sampling in latitude [panels (b) and (c)]. Blue,
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Northern hemisphere and the Southern hemisphere, respectively.
In the 2 last panels, a case with uniform sampling is also shown
for comparison.

tion. For case 1, data assimilation is effective in terms
of minimizing the misfit and recovering the true merid-
ional circulation even if we use (3) or (4) only. For the
more complex cases 2 and 3, using only one of the ob-
jective functions lowers the performance of optimization,
i.e., more iterations are required to recover the merid-
ional circulation to the same accuracy, compared to the
case where the sum of both objective functions is used.
For example, for case 3, it takes 94 iterations to assim-
ilate both components but 141 iterations are needed if
only the toroidal field is given, to reach a discrepancy of
∼ 2%. Also, in most cases, the misfit at the end of the
assimilation is higher than when both fields are consid-
ered. We also showed that when one component of the

field only is observed, the decline of performance cannot
be compensated by a longer sampling time, e.g. 2 so-
lar cycles (one complete magnetic cycle) instead of 1.5.
Overall, both Aoφ(Rs, θ, t) and Boφ(rc, θ, t) are necessary
for the assimilation procedures to capture a meridional
circulation which can optimize the misfit, especially when
the true meridional circulation is far more complex than
one cell per hemisphere. For the next section, we will
thus use the synthetic observations both on Aφ and Bφ
to perform the assimilation. As noted above in a real
situation we will not have direct access to the toroidal
field at the base of the convection zone, but instead to
surface field (via for instance sunspot observations) that
we will have to relate to the deep toroidal field via an
adequately defined operator. We have tested the influ-
ence on the convergence of shifting the location of the
toroidal sampling and found that in the unicellular case
it has little influence. For the multicellular cases 2 &
3, as long as the sampled depth probes the deeper sec-
ondary cell, the data assimilation procedure behaves the
same. Nevertheless in the Babcock-Leighton framework
it is natural to relate the sunspot number to the field
strength at the base of the convection zone, as it mim-
ics the rise of toroidal flux tubes to the surface. Defining
the corresponding operator will be the subject of our next
study.

We also investigate here the relationship between the
accuracy of the forecast parameters dij , defined in equa-
tion (5) and the convergence criterion. Plots of ∆p/p
against |∇J |/|∇J0| are shown in Figure 11. In all cases,
∆p/p decreases as the preset criteria is lowered, although
in cases 2 and 3, the discrepancy cannot get lower then
∼ 1%. Indeed, as mentioned above, the true flow struc-
ture in cases 2 and 3 are more complicated than in case1,
making the minimization more difficult. The number of
iterations required for various criteria are shown in Fig-
ure 11(b). It shows that when |∇J |/|∇J0| < 10−3 con-
vergence becomes quadratic and a few further iterations
can decrease the gradient by 2 to 3 orders of magnitude.

5. RESULTS USING DATA WITH NOISE

In this section, we move to a more realistic situation
where we carry out the same twin experiments but with
noised data. The synthetic observations are perturbed
by a normally distributed random noise, with standard
deviation being a factor of the r.m.s. of the magnetic
field/vector potential at steady state, denoted by ε in
the preceding sections.

5.1. Dependence of convergence behavior on the noise
level

For our reference sampling, we carry out assimilation
with synthetic observations noised with different values
of ε in cases 1, 2 and 3. The evolution of the objec-
tive function and the discrepancy as the minimization
proceeds are shown in Figure 12. The normalized objec-
tive function J /J0 [panel (a)] at the optimal parameters
is no longer exactly zero, but is positive, increasing as
the noise level increases. Similarly, ∆p/p at the opti-
mum also increases with the noise level. The number
of iterations required is slightly more than most of the
corresponding perfect (error-free) situations, i.e., it takes
∼ 20 iterations for the simplest unicellular case to con-
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Figure 9. Stream function of the estimated meridional flow of case 3 at the end of assimilation, with a latitudinal sampling restricted
to (a) the Northern hemisphere, (b) the Southern hemisphere and (c) the activity band. Observations are made every month for 1.5 solar
cycles. This shows that observing in one hemisphere leaves the estimation of the meridional circulation in the other hemisphere less ideal.
In (c), the synthetic observations are noised with ε = 1% (see text for details).
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Figure 10. Normalized deviation of the predicted field from the
true field at 35◦ (blue) and at −35◦ (red), for case 3 when mag-
netic observations are restricted to the Northern hemisphere. The
vertical orange lines indicate the limits of the observational win-
dow. Note that outside the sampling window, the deviation starts
to grow.

verge, about ∼ 60 for case 2 and ∼ 110 for case 3 where
the true meridional flow becomes more complex.

Note that for case 1, as the noise level ε increases, the
optimization remains successful: the normalized objec-
tive function reaches a value proportional to ε2, as it
should in a pure linear situation. For cases 2 and 3, the
effect of noise on assimilation is less straightforward, for
the reasons outlined above in the perfect data case (see
Sec. 4.2). This contributes to the misfit of data at
the end of the assimilation in addition to the artificially
added noise. Another feature is the relationship between
the residual discrepancy ∆p/p and the noise level ε. For
case 1, it is visible in Figure 12(b) that ∆p/p increases
linearly with the noise level, i.e., the accuracy decreases
linearly as the noise level is increased. The linear rela-
tionship implies that the change in magnetic field with
respect to that of the norm of the control vector {di,j}

is linear. Moreover, the discrepancy when no noise is
added, is nonzero. This is because the optimization ter-
minates when the preset convergence criterion is reached,
and as the criteria is finite, there is a finite residue at
the end of the assimilation. However, for cases 2 and 3,
such linear relationship is not obvious and the discrep-
ancy increases very slowly with ε [barely observable in
Figure 12(b)], since, as stated before, the minimization
for more complicated flow profiles is more challenging us-
ing a simple unicellular flow initial guess. Therefore, in
cases 2 and 3, such a linear relationship rooted from the
property of the model is hindered.

5.2. Distributions of the deviations of the field

In this subsection, we investigate how the predicted
Aφ deviates from the true one based either on the initial
guess of vp or on its final estimate after assimilation,
considering the No observations that are made. We shall
refer to these differences as the innovations in the former
case and to the residuals in the latter case.

As in the previous sections, the prior (or initial guess)
in case 1 is a unicellular flow producing a magnetic cycle
of ∼ 44 years while for cases 2 and 3 the prior is also
a unicellular flow but producing a 22-yr cycle. Again,
the reference sampling (1.5 solar cycles, sampling ev-
ery month) is used. The distribution of the deviations
Aφ − Aoφ for the most complicated case 3 is shown in

Figure 13. The noise added to the data is ε = 10% for
this example. Initially, the innovations are broadly dis-
tributed, showing the large discrepancy between the true
trajectory and the initial state. After assimilation, the
residuals show a peak which resembles a Gaussian (ver-
ified with a least square fit shown in black line in the
figure), with a kurtosis of 3.05 (a value of 3 is expected
for a perfect Gaussian) and a skewness of 1.04 × 10−2

(zero is expected for unbiased distribution). The corre-
sponding average and standard deviation are consistent
with the settings of our twin experiment, i.e., zero mean
and σ = 10% r.m.s. (Table 2). The normalized misfit is
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Figure 11. Accuracy of the estimated parameters (panel (a)) and required number of iterations (panel (b)) at different convergence
criteria. The discrepancy ∆p/p decreases with the criteria |∇J |/|∇J0| (the line of slope 1 is shown for reference). On panel (b), note the
region of quadratic convergence as the criterion drops below 10−3.
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Figure 12. Objective function (left) and ∆p/p (right) as the minimization evolves, with the reference sampling, at different noise levels.
Note that in case 1 when the noise increases, the curves of objective function and ∆p/p starts to level off at higher values.

1.03. In this example, we illustrate that the assimilation
algorithm not only minimizes the misfit and gives an es-
timate of the meridional circulation close to the true one
(Sec. 5.1), but also correctly recovers the normal distri-
bution of the synthetic noise, with a normalized misfit
being statistically consistent (i.e., ∼ 1).

We now consider a more realistic situation, where the
field in the activity band only is observed (keeping the
temporal sampling the same as the reference), for cases
2 and 3. We plot the distribution in Figure 14 for case 3
(case 2 is similar and thus not shown), with a noise level
of ε = 1%. Starting from a broadly distributed innova-
tions as in the previous case, the residuals crowd again
around zero. However, the standard deviations are now
larger than that of the synthetic noise: 2.86 for case 2 and
2.32 for case 3 (where it should be 1 for an ideal situa-
tion). Moreover, the distributions depart somewhat from
pure Gaussians and are biased, with a kurtosis = 8.09
indicative of extended wings and a skewness = 1.79 for
the case 3 shown in Figure 14. The corresponding nor-
malized misfits are 3.01 and 2.71 respectively, which is an
indication of under fitting. The estimated meridional cir-
culation [shown in Figure 9(c)] is nevertheless still close
to the truth. Therefore, it is still possible to estimate
a complex multi-cellular flow in this more realistic ex-
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Figure 13. Distribution of the misfit (both innovations and resid-
uals) with noise level of 10% r.m.s. in case 3. The distribution is
fitted with a Gaussian (with least square fit, shown in black line),
the corresponding average and standard deviation are listed in Ta-
ble 2.

ample of nonuniform sampling and noised data, even if
the statistics of the residuals clearly indicate that the
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Case Mean Stand. dev. Norm. misfit Mean residual Stand. dev. Norm. misfit
innovation of innovations before assim. of residuals after assim.

1 0.72 152 % 13.6 −1.89 10−4 9.86% 0.995

2 −1.61 164 % 23.2 2.65 10−2 11.2% 1.11

3 −0.99 524 % 39.3 9.27 10−3 10.4% 1.03

Table 2
The average and standard deviation of Aφ −Aoφ, for an assimilation with the reference sampling. Shown are the statistics of the

innovations (prior to assimilation) and those of the residuals (after completion of assimilation). Averages and standard deviations are
normalized by the root mean square of Aφ of the reference solution. The values for the residuals are consistent with the noise added to

the data (i.e., zero average, σ = 10% r.m.s.) and the normalized misfits are close to 1.
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Figure 14. Same as figure 13, for a latitudinal sampling restricted
to the activity band only and a noise level of ε = 1%. Note that
the distribution of residuals slightly deviates from a Gaussian dis-
tribution.
recovery is not perfect.

Finally, we show in Figure 15 the recovered field of the
assimilation for case 3, when the data files are noised with
ε = 30%. The trajectory obtained from the initial guess
is shown in green, the final forecast after assimilation in
blue and the true trajectory in orange. Note that the
forecast trajectory only deviates by a small amount from
the true trajectory as time evolves.

6. DISCUSSION AND CONCLUSIONS

In this study, a first step towards predicting future so-
lar activity using data assimilation has been presented. A
variational data assimilation technique has been applied
to a mean-field axisymmetric flux-transport Babcock-
Leighton dynamo model, widely used in the community
to reproduce key properties of the real solar cycle. As
a proof of concept, we have focused our study on the
estimation of the meridional circulation by assimilating
magnetic proxies into our data assimilation procedure.
We have successfully adjusted a control vector represent-
ing the expansion coefficients of the meridional flow onto
radial and latitudinal functions such as to minimize the
deviations (misfit) of the outputs of the model to syn-
thetic magnetic observations.

Using twin experiments where observations are pro-
duced by the model itself (but where noise can be added
to perturb the data), we show that with adapted sam-
pling of different components of the magnetic field, and
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Figure 15. Same as Fig.5, save that synthetic data are noised
with a noise level of 30% relative to the r.m.s.. Note that the
deviation grows slowly as time evolves.

starting from a classical unicellular meridional circula-
tion, we are able to minimize the misfit to the observa-
tions and recover a complex flow profile, with multiple
cells and asymmetry with respect to the equator. By
performing a systematic study of the effects of the spa-
tial and temporal sampling patterns on the efficiency of
the assimilation method, we find an optimal sampling
with an observational window of width 1.5 cycles, uni-
form sampling in latitude with ∆θ ∼ 3o and monthly
observations for almost all cases considered. An inter-
esting aspect of this systematic study however, is that
observing in one hemisphere only or in the activity belt
only can produce flow reconstructions of reasonably good
agreement with the true state, even for a complex flow
structure. When noise is added to the observational data,
a normalized misfit close to 1 is found in the optimal case,
showing that the true state is very well recovered. When
an even more realistic case is considered (complex flow
and 30% noise or activity band sampling), minimization
remains effective and the estimated flow is still reason-
able, though the residuals deviate slightly from Gaussian
distribution, with a higher normalized misfit. Overall,
proof is made that the assimilation method is successful
throughout our systematic studies.

The variational technique can be already very useful at
testing the sensitivity of various outputs of the models to
poorly constrained input parameters, such as the merid-
ional flow profile. Indeed, below ∼ 40Mm, inversions
based on helioseismic techniques such as ring diagram
or time distance analysis do not seem to give consistent
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results (Zhao et al. 2013; Jackiewicz et al. 2015). We
showed that the high sensitivity of the components of
the magnetic field to the flow structure and amplitude in
flux-transport Babcock-Leighton models makes it possi-
ble to estimate the meridional circulation profile by as-
similating magnetic field observations. If such a model
is a good representation of what actually happens in the
Sun, this technique is extremely promising to be able to
much better constrain this internal flow.

As far as predictions of future solar activity is con-
cerned, our present studies are still limited at a stage of
proof of concept based on twin experiments where the
assimilated data is not real solar observations. However,
we used magnetic outputs which are believed to be good
proxies for real magnetic measurements at the solar sur-
face like sunspot distributions, polar fields or structure
of the butterfly diagram. Note that we did use a direct
measure of the toroidal field at the base of the convective
envelope and that in reality one would have to construct
an operator that adequately relates the observed surface
field to the deeply anchored and hidden magnetic field.
Defining such an operator will be the subject of our next
study.

At this stage, the meridional circulation in our model
is expressed as an expansion on basis functions, which
defines the flow globally in the whole convection zone.
This basis was limited to 2 sinusoidal radial functions
and 4 Legendre polynomials in latitude in the present
analysis for practical purpose as nothing prevents us
to go beyond. This global definition obviously implies
some symmetries and possibly artificial coupling between
hemispheres, which would probably not be the case with
a point-wise definition. The latter would of course in-
volve much more coefficients to recover and would re-
quire to impose a constraint that the recovered flow is
divergence-free. When projecting surface meridional cir-
culation onto associated Legendre polynomials, as we
have done using data from Ulrich (2010), we find that
small velocity structures contain little power compared
to the global low order modes. Hence even though our
strong formulation to recover the meridional circulation
has its own limitation, we do capture the dominant com-
ponents, which encourages us to apply it to real solar
data. Note also that in the present work we have de-

liberately chosen to initialize our assimilation procedure
with a magnetic field which was only weakly related to
the solution that we were looking for (recall Sec. 3.3 and
Appendix C). In an operational forecasting procedure,
one would use instead the magnetic field obtained from
the previous assimilation cycle, which would presumably
give rise to a faster convergence to the optimum.

In this work, only synthetic observations with constant
cycle period were used. This deviates from the activity
of the real Sun, which presents strong modulation of its
magnetic cycle, both in duration and amplitude. If we
want to be able to take into account the temporal mod-
ulation of the solar cycle (which is obviously needed if
we want to make predictions), the next step is to pro-
duce a model with such modulations. This is possible in
the mean-field dynamo framework if stochastic fluctua-
tions of the dynamo coefficients or on the meridional flow
are introduced (see for example Charbonneau & Dikpati
2000; Ossendrijver et al. 2002) or if the back-reaction
of the magnetic field on the flow is considered through
the Malkus-Proctor effect (e.g. Malkus & Proctor 1975;
Tobias 1997; Moss & Brooke 2000; Bushby 2006; Rem-
pel 2006). The idea would then be to assimilate synthetic
data based on a model with a time dependent meridional
flow, such that the auto-correlation of the modeled flow
is similar to that of the observed flow in the real Sun.
The predictive skills, predictability limit and sensitivity
of these models to perturbations of the input parameters
have to be studied, to gain some insights on the relia-
bility of predictions which could be provided. Incorpo-
rating real solar data coming from instruments onboard
satellites like Hinode, Stereo, SDO and the future Solar
Orbiter mission into a well-suited model is then the ulti-
mate goal of our work. If flux-transport models are valid
to explain the large-scale solar magnetic activity, they
should enable us to produce a quantitative estimate of
the meridional flow in the solar interior. Based on such
an estimate, predictions of the timing, amplitude and
shape of the next solar cycle will be made and compared
with that provided by other existing methods relying on
geomagnetic precursors or other statistical estimates (see
for instance, Hathaway 2010; Petrovay 2010).

APPENDIX

A. THE BABCOCK-LEIGHTON MEAN-FIELD DYNAMO MODEL

In this section, we present the Babcock-Leighton dynamo model and the corresponding physical ingredients we
adopted for the assimilation for reader’s reference.

We start from the induction equation to model the solar dynamo, describing the evolution of large scale magnetic
field B,

∂tB = ∇× (v ×B)−∇× (η∇×B), (A1)

where η is the effective magnetic diffusivity. We adopt a kinematic formulation, i.e. the velocity field v is prescribed
instead of being a dynamical variable. By introducing the spherical coordinate system and assuming axisymmetry, we
rewrite the magnetic field and velocity field as a sum of poloidal and toroidal components:

B = Bφeφ +∇× (Aφeφ) and v(r, θ) = vp(r, θ) + r sin θΩ(r, θ)eφ, (A2)

where Bφ is the toroidal field and Aφ is the poloidal potential and Ω(r, θ) is the differential rotation.
Then the induction equation (A1) can be rewritten in poloidal and toroidal components as

∂tAφ =
η

ηt

(
∇2 − 1

$2

)
Aφ −Re

vp
$
· ∇($Aφ) + CsS(r, θ, Bφ), (A3)
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∂tBφ =
η

ηt

(
∇2 − 1

$2

)
Bφ +

1

$

∂($Bφ)

∂r

∂(η/ηt)

∂r
−Re$vp · ∇

(
Bφ
$

)
−ReBφ∇ · vp + CΩ$ [∇× (Aφeφ)] · ∇Ω,

(A4)

where $ = r sin θ. The domain is r ∈ [0.6, 1] and θ ∈ [0, π] as specified in Sec. 2. The toroidal field Bφ = 0 at the
boundary of the domain, and for Aφ, we impose the pure radial field approximation at the surface, i.e., ∂r(rAφ) = 0 at
r = 1, and Aφ = 0 on all the other boundaries. Here and in the following, the length is normalized with solar radius Rs,
time is normalized with the diffusive time scale R2

s/ηt where ηt is the envelope diffusivity. Using this normalization, we
introduce 3 dimensionless parameters, namely the Reynolds number based on the meridional flow speed Re = Rsuo/ηt,
the strength of the Babcock-Leighton source Cs = Rsso/ηt and the strength of the Ω-effect CΩ = ΩoR

2
s/ηt, with uo

and so given in Table 3 and Ωo = 2π × 456nHz.

Case Resolution Time step uo ηt so Cycle period
nr × nθ (cms−1) (cm2s−1) (cms−1) (yrs)

1 1282 10−6 690 1011 50 22.0
2 1282 10−6 1379 2× 1011 201 21.6
3 1282 10−6 1034 2.4× 1011 17.2 21.7

Table 3
Parameters of the 3 models being studied. Unicellular (case 1), 4 cells (case 2), asymmetric (case 3).

The physical ingredients for the model include a differential rotation which generates the toroidal magnetic field
from the poloidal field:

Ω(r, θ) = Ωc +
1

2
(1− Ωc − c2 cos2 θ)

[
1 + tanh

(
r − rc
d1

)]
, (A5)

with d1 = 0.016, rc = 0.7 (base of the convection zone), Ωc = 0.92 and c2 = 0.2,
the Babcock-Leighton source of poloidal field, with a quenching term to prevent the magnetic energy from growing

exponentially:

S(r, θ, Bφ) =
1

2

[
1 + tanh

(
r − r2

d2

)][
1− tanh

(
r − 1

d2

)]
cos θ sin θ

{
1 +

[
Bφ(rc, θ, t)

B0

]2
}−1

Bφ(rc, θ, t), (A6)

with d2 = 0.008, r2 = 0.95 and B0 = 104. Note the dependence of toroidal field at the base of the convection zone
results in a nonlocal source term,

and the magnetic diffusivity which is given by

η

ηt
=

ηc
2ηt

[
1− tanh

(
r − rc
d1

)]
+

1

2

[
1 + tanh

(
r − rc
d1

)]
, (A7)

where ηc = 109 cm2 s−1.
Another important ingredient is the meridional flow vp which advects the magnetic field in the meridian plane. Since

this ingredient is at the center of this present study, it is specified in the main body of the text, in Sec. 2.

B. DERIVATION OF THE ADJOINT BABCOCK-LEIGHTON MODEL

In this appendix, we follow and adapt the procedure described by Talagrand (2003) in order to derive the adjoint
dynamo model needed to express efficiently the sensitivity of the objective function to its control vector. The novelty
here with respect to the previous derivation by Jouve et al. (2011) stands in the fact that we are operating in spherical
geometry with a Babcock-Leighton flux transport dynamo model, as opposed to in Cartesian geometry with a simpler
α − Ω dynamo model. Let us consider the coupled induction equations (A3) and (A4) for the fields Aφ and Bφ. We
look for solutions over the domain D = [rbot, rtop] × [0, π] × [0, 2π] × [ts, te] in the (r, θ, φ, t) -space. These equations
are first order in time and second order in space.

Consider Aoφ(r, t) and Boφ(r, t) as our observations over the domain D. Since we assimilate data on the toroidal and
poloidal fields, our objective function

J =
1

2

∫
d3r

∫
dt
[
(Bφ −Boφ)2 + (Aφ −Aoφ)2

]
, (B1)

where the spatial integration is over the domain of the dynamo model described in Sec. A. The system considered is
axisymmetric, so that integration with respect to φ is equivalent to multiplication by a factor of 2π.

We aim to express the variations of the objective function J subject to variations of Aφ and Bφ for all points in
space at the initial time t = ts, as well as to variations in the meridional flow vp. Such variations are constrained by
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the dynamo equations. Let us linearize and differentiate equations (A3) and (A4) with respect to Aφ, Bφ and vp. The
corresponding equations write

∂tδAφ =
η

ηt

(
∇2 − 1

$2

)
δAφ −Re

δvp
$
· ∇($Aφ)−Revp

$
· ∇($δAφ)

+ Csf(r)g(θ)
1−B2

φ(rc, θ, t)/B
2
0[

1 +B2
φ(rc, θ, t)/B2

0

]2 δBφ(rc, θ, t),
(B2)

∂tδBφ =
η

ηt

(
∇2 − 1

$2

)
δBφ +

1

$

∂($δBφ)

∂r

∂(η/ηt)

∂r
−Re$δvp · ∇

(
Bφ
$

)
−ReδBφ∇ · vp −ReBφ∇ · δvp + CΩ$ [∇× (δAφeφ)] · ∇Ω,

(B3)

where we use the explicit expression of the Babcock-Leighton source (A6), and the variation is up to first-order in
δBφ.

The variations of J are subject to the constraints defined by these last two equations. Consequently, we introduce
the Lagrange multipliers −A∗φ(r, t) and −B∗φ(r, t), respectively, for equations (B2) and (B3). The notations A∗φ and

B∗φ are used so that when the derivation proceeds, we can identify them as defining the adjoint magnetic field (A∗φ and

B∗φ being the adjoint poloidal potential and toroidal field, respectively). We get

δJ =

∫
d3r

∫
dt

{
(Bφ −Boφ)δBφ + (Aφ −Aoφ)δAφ

−A∗φ

[
∂tδAφ −

η

ηt

(
∇2 − 1

$2

)
δAφ +Re

δvp
$
· ∇($Aφ) +Re

vp
$
· ∇($δAφ)

− Csf(r)g(θ)
1−B2

φ(rc, θ, t)/B
2
0[

1 +B2
φ(rc, θ, t)/B2

0

]2 δBφ(rc, θ, t)

]

−B∗φ

[
∂tδBφ −

η

ηt

(
∇2 − 1

$2

)
δBφ −

1

$

∂($δBφ)

∂r

∂(η/ηt)

∂r
+Re$δvp · ∇

(
Bφ
$

)

+Re$vp · ∇
(
δBφ
$

)
+ReδBφ∇ · vp +ReBφ∇ · δvp − CΩ$ [∇× (δAφeφ)] · ∇Ω

]}
.

(B4)

The differential operators acting on the variations of Aφ, Bφ, and vp can be removed via integration by parts, at
the expense of introducing boundary integrals, either over the surface ∂V of the spatial domain (we will remove the
notation ∂V for clarity after its first introduction), or at the end-points in time ts and te.

For example, for the time derivative and diffusion of Aφ, one gets

−
∫

d3r

∫
dtA∗φ∂tδAφ =

∫
d3r

∫
dtδAφ∂tA

∗
φ −

∫
d3rA∗φδAφ

∣∣∣∣te
ts

, (B5)

and

∫
d3r

∫
dt
A∗φη

ηt

(
∇2 − 1

$2

)
δAφ =

∫
d3r

∫
dtδAφ

(
∇2 − 1

$2

)
A∗φη

ηt
+

∫
dt

∫
∂V

da ·
(
A∗φη

ηt
∇δAφ − δAφ∇

A∗φη

ηt

)∣∣∣∣
∂V

,

(B6)

respectively. In addition, the rearrangements for the nonlocal Babcock-Leighton source term (a novelty of this study)
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write ∫
d3r

∫
dtA∗φCsf(r)g(θ)

1−B2
φ(rc, θ, t)/B

2
0[

1 +B2
φ(rc, θ, t)/B2

0

]2 δBφ(rc, θ, t)

=

∫
d3r

∫
dtA∗φCsf(r)g(θ)

∫
dr′δ(r′ − rc)

1−B2
φ(r′, θ, t)/B2

0[
1 +B2

φ(r′, θ, t)/B2
0

]2 δBφ(r′, θ, t)

=

∫
sin θdθ

∫
dφ

∫
r′2dr′

∫
dtA∗φCsf(r′)g(θ)

∫
drδ(r − rc)

1−B2
φ(r, θ, t)/B2

0[
1 +B2

φ(r, θ, t)/B2
0

]2 δBφ(r, θ, t)

=

∫
d3r

∫
dt Csg(θ)

δ(r − rc)
r2

1−B2
φ(r, θ, t)/B2

0[
1 +B2

φ(r, θ, t)/B2
0

]2 [∫ dr′r′2A∗φ(r′, θ, t)f(r′)

]
δBφ(r, θ, t).

(B7)

Note the introduction of the δ-function δ(r′ − rc) in the first right-hand side of equation (B7), which should be
distinguished from the δ symbol used to represent variations of field variables.

By grouping the terms by variations, we get the following equation for δJ :

δJ =

∫
d3r

∫
dt

{[
∂tA

∗
φ +

(
∇2 − 1

$2

)
ηA∗φ
ηt

+Re$∇ ·
A∗φvp

$
+ CΩeφ · ∇($B∗φ)×∇Ω + (Aφ −Aoφ)

]
δAφ

+

[
∂tB

∗
φ +

(
∇2 − 1

$2

)
ηB∗φ
ηt

+Re
1

$
∇ · ($B∗φvp)−

1

r
∂r

(
rB∗φ∂r

η

ηt

)
−ReB∗φ∇ · vp

+ Csg(θ)
δ(r − rc)

r2

1−B2
φ/B

2
0

(1 +B2
φ/B

2
0)2

∫
dr′r′2A∗φ(r′, θ, t)f(r′) + (Bφ −Boφ)

]
δBφ

+Re

[
∇(B∗φBφ)−A∗φ

1

$
∇($Aφ)−$B∗φ∇

Bφ
$

]
· δvp

}

−
∫

d3rA∗φδAφ

∣∣∣∣te
ts

+

∫
dt

∫
da ·

(
A∗φη

ηt
∇δAφ − δAφ∇

A∗φη

ηt
− vpA

∗
φReδAφ + CΩeφ ×∇ΩB∗φ$δAφ

)∣∣∣∣
∂V

−
∫

d3rB∗φδBφ

∣∣∣∣te
ts

+

∫
dt

∫
da ·

(
B∗φη

ηt
∇δBφ − δBφ∇

B∗φη

ηt
− vpB

∗
φReδBφ + erB

∗
φδBφ

∂η/ηt
∂r

−ReδvpB∗φBφ
)∣∣∣∣

∂V

.

(B8)

The expression is valid for any A∗φ(r, t) and B∗φ(r, t). The first three lines of the above equations vanish if we require
A∗φ and B∗φ to satisfy the following partial differential equations:

−∂tA∗φ =

(
∇2 − 1

$2

)
ηA∗φ
ηt

+Re$∇ ·
A∗φvp

$
+ CΩeφ · ∇($B∗φ)×∇Ω + (Aφ −Aoφ), (B9)

and

−∂tB∗φ =

(
∇2 − 1

$2

)
ηB∗φ
ηt

+Re
1

$
∇ · ($B∗φvp)−

1

r
∂r

(
rB∗φ∂r

η

ηt

)
−ReB∗φ∇ · vp

+ Csg(θ)
δ(r − rc)

r2

1−B2
φ/B

2
0

(1 +B2
φ/B

2
0)2

∫
dr′r′2A∗φ(r′, θ, t)f(r′) + (Bφ −Boφ).

(B10)

Now we can identify equations (B9) and (B10) as the adjoint equations of the forward dynamo model (A3) and (A4),
respectively, with the adjoint field variables A∗φ and B∗φ. Note that the nonlocality of the (forward) Babcock-Leighton
effect results in a nonlocality of its adjoint and in the introduction of the δ-function. Interestingly, in these adjoint
equations, differential rotation now acts upon A∗φ, while the Babcock-Leighton effect has an imprint on B∗φ. This
is contrary to the ‘forward’ situation and illustrates nicely the general mechanism of ‘transposition’ that forms the
backbone of any adjoint-based variational approach (Talagrand 2003).
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Let us now inspect the boundary terms (in space). The boundary conditions of the forward dynamo model are that

∂r(rAφ) = 0 at r = rtop, (B11)

Aφ= 0 at r = rbot, and (B12)

Bφ= 0 at r = rbot and r = rtop. (B13)

The respective variations of these quantities must consequently vanish. We also have that da · vp = 0 on ∂V , which
suppresses some of the components of the boundary terms appearing in the last two lines of the above equation. Now,
if we further require that

∂r(A
∗
φrη/ηt) = 0 at r = rtop, (B14)

A∗φ= 0 at r = rbot, and (B15)

B∗φ= 0 at r = rbot and r = rtop (B16)

at all times, the surface integrals in (B8) identically vanish. These conditions are the adjoint boundary conditions that
are naturally associated with the adjoint problem. At this stage, the variations of J reduce to

δJ =

∫
d3rReδvp ·

∫
dt

[
∇(B∗φBφ)−A∗φ

1

$
∇($Aφ)−$B∗φ∇

Bφ
$

]
−
∫

d3rA∗φδAφ

∣∣∣∣te
ts

−
∫

d3rB∗φδBφ

∣∣∣∣te
ts

. (B17)

The adjoint fields are auxiliary fields whose task is to help us compute the sensitivity of J to its control parameters,
and we can conveniently ask them to satisfy the following terminal conditions

A∗φ = B∗φ = 0 at t = te. (B18)

This leaves us with the following variation of J

δJ =

∫
d3rReδvp ·

∫
dt

[
∇(B∗φBφ)−A∗φ

1

$
∇($Aφ)−$B∗φ∇

Bφ
$

]
+

[∫
d3r

(
A∗φδAφ +B∗φδBφ

)]∣∣∣∣
t=ts

. (B19)

This expression shows that the partial derivatives of J with respect to Aφ(r, ts), Bφ(r, ts) and vp(r) write respectively

∂J
∂Aφ

(r, ts) = A∗φ(r, ts),
∂J
∂Bφ

(r, ts) = B∗φ(r, ts),

∂J
∂vp

(r) = Re

∫
dt

[
∇(B∗φBφ)−A∗φ

1

$
∇($Aφ)−$B∗φ∇

Bφ
$

]
.

(B20)

The actual calculations of these derivatives demand in particular the knowledge of A∗φ(r, t) and B∗φ(r, t). Those are

obtained from the integration of the adjoint equations (B9) and (B10) subject to the boundary and terminal conditions
we just discussed. The integration is carried out backwards from te to ts, which is what makes it stable: the partial
time derivative is preceded by a minus sign, and the Laplacian on the right-hand sign does not therefore lead to
instabilities (Talagrand & Courtier 1987).

In practice, instead of discretizing and numerically integrating the adjoint equations (B9) and (B10), we develop the
adjoint model directly from the discretized forward model (Talagrand 1991). This ensures that the computation of
the gradient is consistent between the forward and adjoint models. Furthermore, as we observe the magnetic proxies
at discrete times and positions, and with uncertainties, the driving terms Aφ −Aoφ and Bφ −Boφ in the adjoint model
are collections of delta functions in space and time, divided by the appropriate variances. This is what we effectively
implemented in our optimization routine for the twin experiments.

In this study, as discussed in Sec. 3.3, Aφ(r, ts) and Bφ(r, ts) are not included in the control vector. We are therefore
left with the sensitivity of J to the sole vp(r). This steady flow is mathematically represented by a streamfunction,
recall Eq. (2). It is thus divergence-free, i.e., the term −ReB∗φ∇ · vp in equation (B10) and hence the term ∇(B∗φBφ)

in the 2nd line of equation (B20) need not be considered. We can then rewrite the variation of the meridional flow in
terms of the streamfunction,∫

d3r

∫
dt(−Re)

[
A∗φ

1

$
∇($Aφ) +$B∗φ∇

Bφ
$

]
· ∇ × (δψeφ)

=−Re
∫

d3r

∫
dt

[
∇
A∗φ
$
×∇($Aφ) +∇($B∗φ)×∇Bφ

$

]
· eφδψ +Re

∫
dt

∫
da ·

[
A∗φ

1

$
∇($Aφ) +$B∗φ∇

Bφ
$

]
× eφδψ

∣∣∣∣
∂V

.

(B21)
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The surface term again vanishes, and by substituting the variation of

ψ(r, θ) = −2(r − rmc)2

π(1− rmc)


m∑
i=1

n∑
j=1

di,j sin
[
iπ(r−rmc)

1−rmc

]
P 1
j (− cos θ) if rmc ≤ r ≤ 1

0 if rbot ≤ r < rmc,

into Eq. (B21), the partial derivative of the objective function with respect to each expansion coefficient di,j writes

∂J
∂di,j

= Re

∫
d3r

{
2(r − rmc)2

π(1− rmc)
sin

[
iπ(r − rmc)

1− rmc

]
P 1
j (− cos θ)

∫
dt

[
∇
A∗φ
$
×∇($Aφ) +∇($B∗φ)×∇Bφ

$

]
· eφ
}
.

(B22)

Again, the calculation of this derivative requires the integration of the adjoint equations for A∗φ and B∗φ subject to the
boundary and terminal conditions already discussed above. Note also that the radial part of the volumetric integration
is now restricted to the domain rmc < r < rtop = 1.

C. ASSIMILATION MODEL STARTED FROM AN ENSEMBLE OF INITIAL CONDITIONS TAKEN FROM A UNICELLULAR
DYNAMO MODEL

As discussed in Sec. 3.3, the assimilation is carried out without the knowledge of the true meridional circulation vp
and the true initial condition for B. In practice, the assimilation tests different initial conditions for Aφ and Bφ, based
on a collection of snapshots from a 22-yr periodic reference dynamo model whose variability is controlled by a unicellular
meridional flow. Under favorable circumstances, there is potentially a time for which the predicted magnetic field can
be almost in phase with the synthetic data, opening the way to a successful recovery of the meridional circulation;
otherwise too large a phase difference leads to a the misfit remaining suboptimal, and an unsuccessful recovery. For
each trial, we let the forward model iterate through the transient regime. When the periodic regime is reached, the the
misfit between the synthetic observations and the predicted trajectory (i.e. the objective function) is evaluated. Those
multiple trials of assimilation for the same set of observations are performed in an embarrassingly parallel framework.

Let us illustrate this further by considering a twin experiment for case 3. The synthetic observations are obtained
using an asymmetric flow associated with a 22-yr magnetic cycle period and the other parameters given in Table 3
and 1. The observations are noised with ε = 10%. The sampling window has a width of 1.5 solar cycles. The field
is sampled monthly and the observations are uniformly distributed in latitude. We take as initial guess an ensemble
of initial conditions from a 22-year reference dynamo model with a unicellular flow, evenly distributed within this
period 22 years. To label these snapshots in the reference model, we plot the time evolution of the toroidal field at the
tachocline at the latitude +35◦ over a period. We define the instant when the field is zero with positive time derivative
to be year zero. We assimilate the same set of data for each initial conditions and the objective function used is the
sum JA +JB . The convergence criteria is 10−6. The result for an ensemble of 10 such snapshots is shown in Table 4.

The iteration converges to a minimum discrepancy of ∼ 1.55% when the snapshot of year 14.0 is chosen as the initial
conditions for assimilation, and the corresponding normalized misfit is close to 1. This shows that our assimilation is
robust with respect to the choice of initial conditions, provided that the choice is physical and the forward model is
allowed to iterate through the transient regime.

snapshot 1.07 3.22 5.37 7.52 9.67 11.8 14.0 16.1 18.3 20.4
epoch (year)

niter 9 8 142 9 75 93 106 172 91 87

∆p/p x x 3.28 13.4 0.236 0.544 1.55× 10−2 1.48 0.326 8.65× 10−2

Jnorm x x 9.90 10.2 2.34 2.57 1.03 3.22 2.24 1.18

Table 4
Assimilation results for case 3, showing the need to resort to an ensemble of initial magnetic conditions in order to eventually achieve a
good recovery of the meridional circulation. The 10 equally-spaced snapshots defining those initial conditions are extracted from a 22

yr-cycle of a dynamo model driven by our initial guess of vp. The sampling window for assimilation has a width of 1.5 solar cycles, with
observations made every month and uniformly distributed in latitude. A divergent iteration is marked with an ‘x’s for the final

discrepancy and normalized misfit. The assimilation is successful with minimum discrepancy of 1.55% if the snapshot of year 14.0 is used
as the initial condition for the assimilation.

D. SENSITIVITY OF ASSIMILATION RESULTS TO THE PERIOD OF UNICELLULAR INITIAL GUESSES

In this appendix we show some examples demonstrating the stability of the performance of the assimilation method
with respect to the choice of period of the dynamo model based on unicellular meridional circulations of various
amplitude, in the vicinity of period 44 years for case 1, 22 years for cases 2 and 3, as mentioned in Sec. 3.2. The
reference sampling is used, i.e., 1.5 cycles, monthly in time and uniform in space at ∆θ = 2.83◦. We start with a
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unicellular stream function and record the performance of convergence. The data is noised at ε = 10%. We tabulate
the tested trials in Table 5. The convergence criterion is fixed to |∇J |/|∇J0| < 10−6, we indicate a successful
converging trial with the corresponding iterations required, and a divergent trial with an ‘x’. The results show that,
the convergence is stable with respect to the change of period of the dynamo model with unicellular initial guess within
a finite margin (in the vicinity of 44 years for case 1, 22 years for case 2 and 3). This also justifies our choice of initial
guesses in the previous analysis. However, this margin of stability shrinks as the meridional flow gets more complex
from the unicellular case to the most complicated asymmetric case.

Case 1, guessed d1,2 0.13 0.145 0.16 0.19 0.22
corr. period (yrs) 54.2 48.3 43.5 36.6 31.6

niter 19 20 19 16 16

Jnorm 1.00 1.00 1.00 1.00 1.00

Case 2, guessed d1,2 0.130 0.150 0.163 0.175 0.180
corr. period (yrs) 27.1 23.6 21.6 20.0 19.4

niter 49 46 50 45 32

Jnorm 1.11 1.11 1.11 1.11 11.3

Case 3, guessed d1,2 0.180 0.185 0.190 0.195 0.200
corr. period (yrs) 23.1 22.6 22.2 21.8 21.4

niter 76 83 106 95 94

Jnorm 3.04 1.03 1.03 1.03 6.36

Table 5
Assimilation performance with respect to initial guesses of unicellular stream function with different strength, which makes the period of
the dynamo vary. In case 1, the 22 years unicellular meridional flow case is the same model as the data file, so no essential assimilation is
done, as a result it is not included in the test. A successful trial shows a normalized misfit close to 1, while a trial which is under fitted
has a misfit � 1. The convergence is stable in the vicinity of the periods chosen to be the initial guesses for the analysis above, but the

margin of the variation of the period shrinks as the model gets more complicated.

E. PARAMETER SPACE USING A SEPARABLE STREAM FUNCTION

In this appendix, we discuss the differences for the data assimilation procedure between using a separable stream
function in the dynamo model or using the general linear combination defined in (2). We also illustrate with a few
examples how well we can recover the separable {ai, bj}, i = 1, ..,m, j = 1, .., n coefficients.

The key difference between the two mathematical structures of stream function is that the general expansion∑
i,j

di,j sin
[
iπ(r−rmc)

1−rmc

]
P 1
j (− cos θ) constitutes a complete set in 2D physical space as m,n approaches infinity, while

expanding the radial and polar dependencies separately
m∑
i=1

ai sin
[
iπ(r−rmc)

1−rmc

] n∑
j=1

bjP
1
j (− cos θ) is only a subset of the

general expansion in the 2D space. Therefore, theoretically, there is a trade off between two situations. The separable
stream function model is neater and uses fewer parameters (m+ n) to fit the observations compared with the general
2D expansion (mn) for constant m,n. However, the misfit of using the separable model of stream function in assimi-
lation will always be essentially equal or greater than the general expansion, as there are more degrees of freedom to
control for the latter case during optimization. Also, having more parameters to adjust in the general structure, it is
easier for the assimilation algorithm to reach a region with lower gradient in the parameter space compared with the
separable expansion.

In operational sense, the dependencies of stream function (and so does the objective function and its gradient in the
parameter space) on the parameters for the separable model are more complicated than those of the general expansion.
For the general 2D expansion, the parameters to be estimated are di,j ’s appear as a linear combination in the expansion
of the stream function in (2). While expanding the radial and polar dependencies separately, the parameters being
estimated would be ai’s and bj ’s, which are nonlinearly coupled in the stream function, and the expression must first
be linearized (in ai’s and bj ’s) to evaluate the adjoint during operation.

In the following examples, we still limit the parameter space to m = 2, n = 4, so that m+ n = 6 vs mn = 8 in the
general case. Since it is the product aibj characterizes the stream function, two different pairs of ai, bj can describe
the same meridional flow if the product aibj is the same. In the evaluation of ∆p/p using the separable model, we
replace di,j with aibj (the forecast) in (5).

We compare the performance of one assimilation trial for cases 1, 2 and 3 using the reference sampling. We use
the sum of both objective functions JA + JB and a 1-cell flow as initial guess. The convergence criterion for both
the separable and general expansion model are |∇J |/|∇J0| < 10−6 (note that as the parameter spaces for 2 stream
function structures are different, the criteria may correspond to different accuracies as the gradients are taken with
respect to different sets of variables). The synthetic observations are unnoised to rule out the possible effects of noise
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on the comparison.
The performance in terms of the convergence behavior as iteration evolves is plotted in Figure 16. The efficiency of

assimilation using the separable model is slightly higher than that of the general expansion in case 1, but significantly
lower than the latter in cases 2 and 3, when the flow becomes more complicated. We see that for cases 2 and 3, for the
same accuracy, the separable model needs more iterations to converge than the general expansion, and for the same
number of iterations, the former gives a greater discrepancy than the latter.
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Figure 16. ∆p/p as the iteration evolves for the 3 cases, sampling monthly for 1.5 solar cycles, uniformly in latitudes. Note that the
general expansion model is more efficient than the separable stream function expansion in this case 2 and 3.
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