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Abstract
We assess the predictive capabilities of various classes of avalanche models for so-

lar flares. We demonstrate that avalanche models cannot generally be used to predict
specific events due to their high sensitivity to their embedded stochastic process. We
show that deterministically driven models can nevertheless alleviate this caveat and be
efficiently used for large events predictions. Our results promote a new approach for
large (typically X-class) solar flares predictions based on simple and computationally
inexpensive avalanche models.
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1. Introduction

It has now been clearly established that solar eruptive phenomena have multiple in-
cidences on the heliosphere, and in particular on the Earth space environment. Along
with coronal mass ejections (CMEs, see Chen, 2011), solar flares are one of the most
dangerous space weather events. They are also systematically observed before a large
CME is triggered (Shibata and Magara, 2011). While CME-triggered energetic particles
reach Earth on time scales of tens of hours, high energy protons accelerated by a flaring
process may reach 1 AU few tens of minutes later, and the associated X-ray photons
affecting the Earth’s ionosphere only 8 minutes later. No robust precursor of solar flares
have been identified so far, preventing any efficient empirical forecast. An ongoing
significant effort to predict when a flare of a given magnitude will occur have been
pursued over the last decade (for a recent review, see Georgoulis, 2012, and references
therein), with moderate success so far. Any progress in this direction is thus highly
valuable for risk management related to space weather.

Decades of flare observations have shown that the probability distribution function
f (E) for flare energy E takes the form of a power law, f (E) ∝ E−α spanning some
8 orders of magnitude in energy, with estimated in the range 1.4− 2.0 (Aschwan-
den and Parnell, 2002; Aschwanden, 2011). Avalanches provide one class of physical
phenomena characterized by such scale-free energy release when driven slowly and
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continuously. Many avalanche models have been developed to represent the solar flares
distribution (see Charbonneau, 2013, and references therein), most of which are based
on the concept of self-organized criticality (hereafter SOC; see Bak, Tang, and Wiesen-
feld, 1987; Jensen, 1998). Lu and Hamilton (1991, hereafter LH) have proposed an
avalanche-type model for solar flares that has become a reference model in the solar
context, although numerous variations have now been developed over the intervening
years.

If flares are indeed accurately described by an avalanche-type model, forecasting
them may appear dubious because of the stochastic driving from which they originate.
In a lattice-based avalanche model – such as the LH model –, the size of an avalanche
is controlled by (i) the starting position of the instability triggering it and (ii) the close-
ness to the threshold of the neighbor nodes. In the original LH model, the starting
position mainly depends on the stochastic driver while the state of the system is the
complex result of past avalanching history. If a large portion of the system is close
to the threshold, the short term avalanching behavior may depend marginally on the
stochasticity of the driver. Building on this idea, Bélanger, Vincent, and Charbonneau
(2007) coupled the LH model to data assimilation technique to forecast solar flares. It
remains unclear, though, whether a mean prediction (i.e., when varying the stochastic
driver) can generally be defined from such an avalanche model.

This paper focuses on the following question: can avalanches models be used for
predictive purposes in the context of solar flares? We present a study of the predictive
capabilities of a series of avalanches models, starting from the original LH model, in
which we introduce variations in the stochastic components – the latter, as expected,
determining the predictive capability of the model. The models considered and their
statistical properties are described in section 2 and 3. Section 4 provides a methodology
to define a prediction from an avalanche model as well as estimates of the predictive
capabilities of the models we considered. We conclude in section 5 by a discussion
summarizing our results and the identification of subclasses of avalanche models most
promising for the development of a solar flares prediction tool based on avalanche
models.

2. Avalanche Models for Solar Flares

An avalanche model necessarily includes some kind of stochasticity. We develop dif-
ferent SOC models by modifying how and where the stochasticity appears, which will
lead to very different predictive capabilities (see section 4). With one exception (see
section 2.2), the models we use are described in details in Strugarek et al. (2014). We
summarize briefly their properties and defer the interested reader to this other paper.

2.1. The Lu and Hamilton Model

Following in part Kadanoff et al. (1989), Lu and Hamilton (1991) have developed a
SOC avalanche model for solar flares that by now has become a kind of “standard”
(for a review, see Charbonneau et al., 2001). Here we consider a version of the LH
model defined over a 2D regular cartesian grid with nearest-neighbor connectivity over
which a scalar field An

i, j is defined. The superscript n is a discrete time index, and the
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subscript pair (i, j) identifies a single node on the 2D lattice. Keeping A = 0 on the
lattice boundaries, the cellular automaton is driven by adding one small increment in
δA per time step, at some randomly selected node that changes from one time step to
the next. A deterministic stability criterion is defined in terms of the local curvature of
the field at node (i, j):

∆An
i, j ≡ An

i, j−
1
4 ∑

k
An

k , (1)

where the sum runs over the four nearest neighbors at nodes (i, j± 1) and (i± 1, j).
If this quantity exceeds some preset threshold Zc then an amount of nodal variable Z
is redistributed to the same four nearest neighbors according to the following discrete,
deterministic rules:

An+1
i, j = An

i, j−
4
5

Z , (2)

An+1
i±1, j±1 = An

i±1, j±1 +
1
5

Z , (3)

where Z ≡ Zc ∆An
i, j/
∣∣∣∆An

i, j

∣∣∣. Following this redistribution it is possible that one of the
nearest-neighbor nodes now exceeds the stability threshold. The redistribution process
begins anew from this node, and so on in classical avalanching manner. Driving is
suspended during avalanching, implicitly implying a separation of timescales between
driving and avalanching dynamics, and all nodal values are updated synchronously
during avalanche to avoid introducing a directional bias in avalanche propagation.

It is readily shown that these redistribution rules, while conservative in A, lead to a
decrease in A2 summed over the five nodes involved by an amount:

∆en
i, j =

4
5

2

∣∣∣∆An
i, j

∣∣∣
Zc

−1

Z2
c , (4)

with the energy released being “assigned” to the unstable node (i, j). If one identifies A2

with a measure of magnetic energy (see Charbonneau, 2013), the total energy liberated
by all unstable nodes at a given iteration is then equated to the energy release per
unit time in the flare. A natural energy unit here (used for normalization in all that
follows), is the quantity of energy e0 ≡ 4Z2

c/5 liberated by a single node exceeding the
stability threshold by an infinitesimal amount. This very simple model yields a good
representation of flare statistics, namely the observed power-law form (and associated
exponents) of the frequency distributions of flare peak energy release P, duration T ,
and total energy release E (Lu et al., 1993; Charbonneau et al., 2001; Aschwanden and
Charbonneau, 2002).

2.2. The Georgoulis and Vlahos Model

Georgoulis and Vlahos (1996, 1998, hereafter GV) have developed a variation of the
LH model based on the work of Vlahos et al. (1995) by adding anisotropic stability
criterion and redistribution rules. This model is known to generate a double power-law
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frequency distribution of avalanche parameters E, P and T, with a steeper power law for
the smaller events (Georgoulis and Vlahos, 1996).

Then, they introduced a modified driving scheme (Georgoulis and Vlahos, 1998)
using a power-low random number generator for the small increments of δA. The
increments follow the probability distribution

P(δA) ∝ (δA)−α . (5)

They showed that the power law indexes of the avalanche parameters E, P and T vary
roughly linearly with the parameter α . This method provides a very interesting mean of
controlling the power-law indexes of SOC models. We choose, for the present study, to
retain only this modified driving scheme – leaving out the anisotropic stability criterion
and redistribution rules – from the complete original GV model.

In addition to the GV model, Norman et al. (2001) also developed a modified driv-
ing scheme by rendering it non-stationary. This work was motivated initially by the
results of Wheatland (2000), who showed that the waiting time distribution of solar
flares should be characterized by a power-law tail for long waiting times, rather than
by an exponential decay which is obtained from the LH model. Finally, Aschwan-
den and McTiernan (2010) re-analyzed the solar flare data from various source and
concluded that the waiting time distribution of solar flares is indeed consistent with a
non-stationary Poisson process, and can well be described with an avalanche model
possessing a non-stationary driver.

A biased driving scheme could in principle make the model either more or less robust
with respect to various random number sequences, and hence improve or decrease its
predictive capabilities. In order to simplify the discussion we only detail the results
obtained with the GV model in this work. Similar analysis made with the model of
Norman et al. (2001) lead to the same conclusions regarding its predictive capabilities
(not shown here). In the following we use a GV model with a parameter α = 2.6.

2.3. The Deterministically Driven Model

The random driver of the LH and GV models can be nicely linked to the Parker picture
of random shuffling of a loop’s magnetic footpoint by photospheric flows. For loop
diameters smaller than this scale, though, the granular flow displaces the footpoints
in a spatially coherent manner far removed from random shuffling. One particularly
interesting form of such global forcing is a twisting of the loop’s footpoints, which then
propagates upwards and accumulates along the length of the loop. This form of global
forcing has a direct equivalent in our 2D cellular automaton (Strugarek et al., 2014)
through the driving rule

An+1
i, j = An

i, j× (1+ ε) , ε � 1 , ∀(i, j) , (6)

where the parameter ε (� 1) is a measure of the driving rate. As in the LH model,
driving is interrupted during avalanching, which amounts to assuming that the driving
timescale is much longer than the avalanching timescale, a reasonable assumption in
the solar coronal context (for a discussion, see Lu, 1995).

The stochastic component of the deterministically driven model can appear in the
threshold definition, in the extraction or in the redistribution rule. In all rules discussed
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so far, redistribution is conservative, in that whatever quantity of A being extracted
from an unstable node ends up in the nearest neighbors. This conservation property is
basically inspired by the sandpile analogy, where avalanches redistribute sand grains
without creating or destroying any. A nonconservative version of the LH redistribution
rules can be defined as follows:

An+1
i, j = An

i, j−
4
5

Z , (7)

An+1
i±1, j±1 = An

i±1, j±1 +
r0

5
Z , (8)

where r0 ∈ [Dnc,1] is again extracted from a uniform distribution of random deviates
with a lower bound Dnc (< 1), such as 1−Dnc is the fraction of the redistributed quantity
Z that is lost rather than redistributed. This rule thus involves one free parameter, namely
the conservation parameter Dnc ∈]0,1[. A nonconservative model of this type, using
fully deterministic driving, and random redistribution and stability criteria, has been
studied extensively in Strugarek et al. (2014). We consider here three deterministically
driven models (hereafter D1, D2 and D3, or D models) with different levels of stochas-
ticity. Model D1 corresponds to model NC6 in Strugarek et al. (2014) and includes
random extraction, random redistribution and random non-conservation components.
Model D2 corresponds to model NC0, which involves only one type of stochastic pro-
cess located in the non-conservative redistribution rule (Dnc = 0.1). Finally, model D3
is equivalent to D2 with a significantly lower non-conservation degree (Dnc = 0.9).

3. Models Properties

In the following analysis, we test the predictive capabilities of the five models by com-
bining 2000 different random number sequences for 200 different initial conditions
for a total of 2106 runs of (on average) 104 iterations. The statistical properties of
each model (described hereafter) are obtained from longer individual runs of more than
107 iterations. The large number of runs we considered is necessary for assessing the
predictive skills of each model but precludes the use of large lattices. We run the five
models on a mid-size [48×48] lattice which represents a good computational compro-
mise since the power-law exponents and global properties of the models were shown to
vary only marginally for larger lattices in the considered models (Vlahos et al., 1995;
Charbonneau et al., 2001; Strugarek et al., 2014).

Fig. 1 shows a small sample of a time series for the lattice energy (a) and avalanche
energy release (b) in the LH model. The lattice energy fluctuates around a mean state
and energy is released by avalanches of various duration and size.

The total energy release (E), duration (T) and peak energy (P) of avalanches are dis-
tributed as a power-law over several decades (see the probability distribution functions –
PDFs – in fig. 2). The D models have an anomalous non-power law component for very
small avalanches, and model D3 also exhibit and small excess of large avalanches (for a
complete discussion on these models, see Strugarek et al., 2014). In this work we assess
the capability of avalanche models to predict large avalanche. Hence, the peculiar small
avalanches population does not affect the results of this paper. The GV model possess
a significantly different waiting time statistics (not shown here). Because of all these
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Figure 1. Lattice energy (a) and avalanche energy release (b) time series for the LH model. Both energies
are normalized to e0.

differences, we need to precisely define the time intervals and avalanches properties on
which we characterize the predictive capabilities to ensure that some specificities of the
models do not include some bias to our analysis. These definitions will naturally change
from one model to the other (see section 4).

The five models are characterized by different power-law exponents, which are listed
in table 1. The power-law exponents characterizing the LH, GV and D3 models stand at
the very low end of the observationally-inferred value for solar flares, citep[e.g., αE ∈
[1.39,1.78] in the hard X-rays data, see][]Aschwanden:2014wg, and fall significantly
below this range for the D1 and D2 models. We will see that the predictive capabilities
of the avalanches models are rather insensitive to these power-law exponents, but rather
strongly depend on their embedded stochasticity Note that it is in principle possible
to alter the components of the model to better reproduce the observationally-inferred
power-law indices (see Charbonneau et al., 2001; Strugarek et al., 2014; Aschwanden
et al., 2014).

4. Predictive Capabilities

4.1. Prediction Time Windows

Predicting the occurrence of an event requires the definition of the time window on
which the prediction is given. The largest events – which we want to predict – are rare
but obey specific statistical rules which depend on the avalanche model considered.
We define a cumulative waiting time τCWT(E) defined by the averaged waiting time
between avalanches of energy higher than E. We display the cumulative waiting times
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Figure 2. Probability density functions of avalanches properties for the different models. The energy E (a),
duration T (b) and peak energy P (c) of avalanches are shown. The power-law exponent for each quantity and
each model are indicated in table 1 and the fits are plotted (solid lines).

Table 1. Statistical properties of the five models used
for this study. The normalization energy and time win-
dows are also indicated (see section 4). All models
are defined on a 2D 48× 48 cartesian lattice with
four-nearest-neighbour connectivity.

E0 τw αE αP αT

LH 2 104 3.25 103 1.37 1.53 1.45
GV 2 104 1.5 103 1.35 1.66 1.53
D1 2 106 103 1.07 1.00 1.21
D2 2 106 1.5 103 1.20 1.24 1.08
D3 2 106 1.5 103 1.39 1.63 1.28

as a function of the corresponding energy E for the model we considered in fig. 3. The
D models have an almost-constant waiting-time distribution for the population of small
avalanches (see Strugarek et al., 2014). Then, the models exhibit of a power-law part
(except for model D3) followed by an exponential part for the highest energies. This
change reflects the energy limit the avalanches can access due to the finite size of the
lattices.

For each model, we identify the time window τw and its corresponding energy E0 at
which the slope of the cumulative waiting times changes (these quantities are model-
dependent and are used to normalize the axes in figure 3). We are interested in the
capability of the models to predict the largest avalanches, hence we consider here
avalanches of energy higher than E0. We use in the following the time window τw to
asses the predictive capabilities of the models. Because of the known statistical distri-
bution of avalanches, most of the runs carried over τw will trigger at least an avalanche
of energy E0. In order to ensure that the predictive skills of the models are not the result
of a simple statistical occurrence of an avalanche over τw, we aim at determining the
predictability of avalanches of energy Ep (and higher) that statistically occur on time
windows larger than 10τw. This will ensure that the observed avalanche results from
a particular lattice state and/or a particular random number sequence (see section 4.2),
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Figure 3. Cumulative waiting time against avalanche energy (see text). Axis are normalized to the time
window and energy threshold considered, which can vary from one model to one another.

and is not the result of a climatological forecast based on the overall properties of the
statistical SOC model (see also Barnes and Leka, 2008).

4.2. Predictions from Stochastic Models

Avalanche models always include a stochastic component, the realization of which
varies from one run to one another. A prediction from a SOC-type model shall be
composed of a sufficient number of runs varying the stochastic component of the model.
Bearing in mind the analogy with solar flares prediction, we want to predict what will be
the energy of the largest avalanche in the next τw, and the time τA at which it will occur.
For one fixed initial condition, we use 2000 different random number sequences and
store for each of them the starting time and release of energy of the largest avalanche
over the time window. The resulting PDFs are shown in fig. 4 for the models LH, GV,
D1 and D2 for a representative initial condition of each model (model D3 gives very
similar results to D2).

The left panels display the PDF of the occurrence time of the largest avalanche in
the time window, and the right panels the PDF of the largest avalanche energy. In all
models, we notice that the energy is regularly distributed around a mean value. While
the D models are well fitted by Gaussian (blue lines), the first two models have non-
Gaussian tails. We chose to fit those resulting PDFs with a Weibull function which give
satisfying fits (red lines). The best of the two fits is shown with a solid bulleted line and
the other is shown in dashed thin line, for reference. The mean predicted value from the
model is defined as the peak location of the best of the two fits. The fact that a mean
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can always be defined confirms the intuition that the stress pattern embedded in an
instantaneous SOC state indeed determines the shape and size of upcoming avalanches,
regardless of the stochastic component of the model. The departure of LH and GV
models from a Gaussian behaviour nonetheless reveal an interesting property, which
shall be confirmed in the following. We observe that the PDF is heavy tailed on the
high energy side compared to a classical Gaussian distribution. On the one hand, the
stochastic process tend to give the climatological prediction of the model (E0, vertical
solid grey line in fig. 4). On the other hand, the initial stress pattern allows (or not)
for very large avalanches to be triggered (Ep, vertical dashed grey line). The heavy-tail
part of the PDF directly derives from this latter property and is obtained only for a few
favorable random number sequences, while the stochastic process is strong enough to
severely alter the mean prediction towards the climatological forecast (vertical solid
gray line). We clearly see that this property of the stochastic process is very strong
in the LH and GV, and significantly weaker in models D. Hence, the Gaussian shape
obtained in the D models simply indicative of marginal dependency upon the random
number sequence: very large avalanche are triggered only when the adequate stress
pattern exists in the lattice.

The left panels reveal another fundamental difference – in the context of predictabil-
ity – between the models we considered. The LH and GV models show PDFs of τA
spanning the whole time window, which means that the stochastic process determines
when the largest avalanche will occur in the next time window. Hence, a mean τA is
generally hard to define, although with some particular initial condition a slight peak
value can be observed (not shown here). Conversely, the D models show PDFs peaked
for a few values of τA which results in a very good confidence in the predicted time
for the maximal avalanche. We note nonetheless that the multiplicity of peaks generally
exhibited by the D1 model leads to a small but significant uncertainty on the occurrence
time of the avalanche considered. Models D2 and D3 are the only models from which
one can confidently predict an occurrence time.

The profound difference between the D models and the others is naturally explained
by the deterministic character of their driving process. Being deterministic, the driver
dictates unambiguously the next avalanching node which will be marginally affected
by the choice of random number sequence (we recall here that in models D2 and D3,
the stochastic process is only acting during avalanches and hence the driver completely
determines the next avalanching node). If this node is likely to trigger a large avalanche,
it will do so for most of the random number sequences. As a consequence, the PDF of
τA for the D models will always be peaked. For small avalanches the stochastic elements
embodied in the D models will significant impact the unfolding of a given avalanche, but
for large avalanches, where many hundreds of nodes are involved – many avalanching
repeatedly in the course of the same avalanche –, these stochastic fluctuations will tend
to “even out” and have a limited impact on global avalanching characteristic, including
the amount of released energy.

4.3. Predictive Skills

We performed the statistical analysis described in section 4.2 for 200 independent initial
conditions – and associated large events – for each of the models. For each event, we
define the predicted energy by the mean of the best fit to the PDF of the predicted
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Figure 4. Largest avalanche mean prediction from a set of 2000 random number sequences using a common
initial condition. Left panels display the PDFs of the predicted arrival time of the largest avalanche, and right
panels the PDFs of the predicted energy. The peak τa is identified by a vertical red dashed line on left panels.
The red and blue lines on the right panel label the Weibull and gaussian fits of the energy PDF. The solid and
dashed vertical grey lines respectively label the normalization energy E0 (the climatological forecast) and the
target energy Ep. Results from D3 (not shown here) closely resemble D2.
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Figure 5. Predictive capabilities of the models for 200 independent events. The predicted energy (defined as
the peak of the best fit of the PDF in the right panels of fig. 4) is shown against the predicted time significance
(see text). The closer the points are from unity, the higher the predictive capability. The dashed horizontal line
corresponds to the climatological forecast of the model, the thin light lines correspond to the targeted energy
Ep for event prediction in each model.

avalanche energy. We also define the predicted time significance st by estimating the
significance of the largest peak in the τA distribution. A significance of 1 corresponds to
one and only one peak at one particular time, while a significance of 0 corresponds to a
purely flat PDF (see the top two left panels of fig. 4). We display the results of the 200
cases for the five models in fig. 5. The horizontal solid lines correspond to the values
of Ep, and the dashed line to the energy threshold. The intuition we got from fig. 4 is
confirmed: the arrival time prediction is very good for D models (st & 0.5), while LH
and GV models rank poorly for almost all events (st . 0.6). The energy predicted by
the LH and GV models lies in between the “climatological forecast” (E0, dashed line)
of the model and the target energy – which they almost never predict correctly. This
implies that they are unable to predict reliably the very large avalanches. Conversely,
large avalanches occurring in D models are generally recovered regardless the particular
random sequence. Model D1 exhibits intermediate behavior with instances of both good
and bad prediction, and model D3 performs extremely well, with st > 0.8 for all the
events considered here.

Some events of the LH and GV models have good st significance and the correspond-
ing predicted energy is significantly larger than the other cases. They can be explained
by taking a close look at fig. 6 which displays the same results as on fig. 5 but against
the largest avalanche occurrence time (normalized to the time window) rather than st .
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normalized to the prediction time window. The thick lines represent the best fit of the data (eqs. 9-13), and
the corresponding shaded areas the estimated error of the fit.

The successfully predicted events of the LH and GV models correspond to runs where
the large avalanches took place at the very beginning of the runs. Hence, they occurred
in runs where almost no random numbers were involved, which is why they have very
good predictive capability. We observe that the later the large avalanche occurs in the
run, the lesser LH, GV and D1 models are able to predict an avalanche different from
the climatological forecast (dashed line). The D2 model is, in contrast, predicting large
avalanches fairly accurately regardless of the occurrence time in the prediction time
window, again proving its high predictive capabilities. Finally, the D3 model (not shown
here) exhibit almost no dependency of the event occurrence upon the time window. The
dispersion of the predicted energies is nevertheless comparable in all the D models. To
confirm this interpretation, we further fit a linear relation between E/E0 and τA/τw for
each of the models (thick lines in Fig. 6). We obtain, with energies normalized to E0 for
each model:

ELH/E0 = 4.30−1.16
τA

τw
, (9)

EGV/E0 = 3.25−0.98
τA

τw
, (10)

ED1/E0 = 2.54−0.92
τA

τw
, (11)
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ED2/E0 = 2.93−0.29
τA

τw
, (12)

ED3/E0 = 4.8 . (13)

Again, only models D2 and D3 exhibit a small dependency of the predicted energy
on the avalanche occurrence time τA. The other models are clearly too sensitive to this
parameter to be considered for reliable forecasts.

5. Conclusions

In this paper, we have assessed the predictive capabilities of a representative set of
avalanches models for solar flares. Starting from the reference model of Lu & Hamilton,
we modified the type of stochasticity embedded in the avalanche model and subse-
quently characterized their predictive capabilities. We focused our study on the predic-
tion of large events, which are the rarest and presumably the hardest and most important
to predict. We showed that only the purely deterministically driven model is able to pre-
dict a large event reliably, while the classical Lu & Hamilton model generally fails. We
recall that the deterministically driven models show a deficit in term of small avalanches
(Fig. 2) and hence depart from the classical SOC state. However, this property does not
modify the predictive capabilities of the model, which were assessed for the larger, rarer
avalanches, traditionally the hardest to predict.

Avalanche models always include the two conflicting aspects (in terms of predictive
capabilities) of stochasticity and long-term correlations. By exploring the physical inter-
pretation of avalanche models in the context of solar flares, we modified the stochastic
process location in the model which lead to the development of a deterministically-
driven model (Strugarek et al., 2014). We empirically demonstrated that this model
possess the required properties to be used as a predictive tool: it is able to unambigu-
ously predict the large avalanche occurrences over a given time window, well above the
“climatological forecast”. We were able to demonstrate that the deterministically driven
model has very little bias with the event occurrence time over a selected time-window.
All the other models we considered are significantly affected by they stochastic compo-
nent which makes them impossible to use for any practical prediction of large events.
Computationally, avalanche models also have the significant advantage of being ex-
tremely inexpensive to run (this naturally results from their low dimensionality and their
simplicity). Those unexpected properties promote a further investigation for the devel-
opment of a near-real time prediction tool of large solar flares based on deterministically
driven avalanche models. We envision this a a two-steps process.

First, as noted already the deterministically driven models considered here produce
either power-law exponents (e.g., for the avalanche/flare energy distribution function)
that are significantly lower than the real solar flare distribution exponents, or a small
excess of large events. These different deterministically-driven models all possess good
predictive capabilities for large events, which is probably one of their robust features.
As a result, variations of the D model could be explored (e.g., in the spirit of Strugarek
et al., 2014) to produce a model combining good predictive capabilities with statistical
properties closer to the real solar flare data.

The second step consists in the coupling of data assimilation techniques (see, e.g.
Bélanger, Vincent, and Charbonneau, 2007) to the chosen deterministically-driven model,
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and use observed times series (such as the Geostationary Operational Environmental
Satellite – GOES X-ray time series) to assess quantitatively the predictive skills of the
model (Barnes and Leka, 2008; Bloomfield et al., 2012). Our approach is complemen-
tary to the approach of Wheatland (2005) who also used the statistical properties of
solar flare to predict the whole-Sun large events occurrence. In our case, the avalanche
model can be viewed as a representation of one particular active region from which we
will assimilate data. The use of selected data assimilation techniques will allow us to
automatically adapt the driver and/or lattice state of the model, so that the output of
the model matches the observed data. We show in figure 7 an example of such data
assimilation run using a simulated annealing method. The GOES flux (blue line in top
panel) is transformed following to the method described in Aschwanden and Freeland
(2012) into a distribution of delta-functions (black lines) filtered for flares of class C8
and above. We make the conversion of the GOES time sequence in terms of avalanche
energy and model iterations using the typical waiting times of flares above C8 in model
D3. In the bottom panel, we show three random realizations of model D3 (sets of light
colored vertical lines) and one realization of model D3 using data assimilation (DA,
red peaks) with the observed GOES time series (gray boxes). Here the assimilation
technique succeeds in capturing the two clusters of flares exceeding C8 at ' 25 and
' 60 hr, without generating spurious (≥ C8) flares before, after, or in between. The
energy levels of the four reproduced flares also match very well with observations.
The details of this assimilation technique will be described in details in Strugarek and
Charbonneau (2014). These preliminary results suggest that the lattice configuration
resulting from the data assimilation run combined with the predictive capabilities of the
model we demonstrated in this work could be used to carry out quantitative predictions
of solar flares through direct simulation. We believe that such a model could lead to
significant improvements of the current predictions of large (typically X-class) solar
flares.
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